Framework of a novel fine mapping strategy from the view of epistasis in large-scale GWAS panel
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Novelty statement
We proposed epistasis based fine mapping (EBFP) strategy, and provided a general framework describing the basic concepts concerning how to perform EBFP analysis. It is the first attempt to fine map association region of GWAS from the view of epistasis. The EBFP strategy for fine mapping would be of great interest to wide readership to whom working on genetics of complex traits using GWAS, no matter in animals, plants or microbes. 


















Abstract
Current statistical fine mapping strategies inferred association regions mainly via significance test of each SNP separately or SNPs in combination within a single-handed region under GWAS scenario, epistasis between loci has not been fully explored up to date. In this study we proposed a novel pipeline termed as Epistasis Based Fine Mapping (EBFP) in large GWAS panel. In EBFP strategy, impact of each SNP in epistatic region on each SNP in hypostatic region are evaluated in terms of corrected P value and Epistatic Effect Index (EEI). The application of EBFP strategy in soybean leaf traits (leaf length to width ratio, LLWR) efficiently narrowed down association regions to almost 1/10 of the preliminary result, and a novel genetic locus was identified as well. Specifically, Ln locus, which has already cloned and functionally characterized previously, showed the highest EEI value, suggested that the EBFP strategy was reliable. However, EBFP strategy is only suitable for GWAS analysis with large scale sample size with dense-genotyping for the sake of high statistical power. With the decreasing trend of sequencing price, wider application of EBFP could be expected now and in the future.
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Based on omnigenic model, only partial phenotypic variation is contributed by a given genetic locus alone for complex traits, and the epistasis responding to the “missing heritability” is commonly existed (Boyle et al., 2017; McKinney and Pajewski, 2011). In the post-GWAS era, statistical fine mapping strategies inferred association regions mainly via significance test of each SNP within a single-handed region, e.g., triaging variants based on P-values or linkage disequilibrium (LD) to the lead SNP, heuristic LD approach, penalized regression, Bayesian and trans-ethnic fine mapping, etc. (Schaid et al., 2018). However, the epistasis between genetic loci has not been fully explored in the fine mapping up to date. 
In many cases, the causal variant of GWAS could explain phenotypic variance most (or close to) significantly compared to that of non-causal variants if dense-genotyping was applied in large scale GWAS panel with high statistical power (Schaid et al., 2018), the farther the non-causal variants to the causal variant was the lower P value would be due to LD, and so does it in the case that epistatic effect on the causal variant. Based on these premises, we proposed a novel strategy, hereafter termed as Epistasis Based Fine Mapping (EBFM), for both credible association region narrowing down and novel genetic loci identification.
To begin with EBFM, we assume that there are two significant regions (hereafter designated as region 1 and region 2) associated to a given trait and region 1 (epistatic) shows epistatic effect on region 2 (hypostatic), and each region contains m and n significant SNPs respectively. To fine map region 2, each significant SNP within region 1 is firstly fixed by AA and aa separately with heterozygous (Aa) omitted. By performing so the epistatic effect of region 1 will be eliminated in either AA or aa genotyped sample panel. Then subset sample panels for each genotype (AA and aa) are used for association analysis on region 2 by EMMAX (Efficient Mixed-Model Association eXpedited) (Kang et al., 2010). After that two P value matrixes, hereafter designated as Ph1 (Ph, P value of hypostatic region, AA) and Ph2 (aa) respectively, would be obtained. As we do not know which genotype (AA or aa?) shows profounder epistatic effect on region 2, the matrix Pa is then generated by , to ensure that each P value reflects maximum impact of region 1 on region 2. As each SNP within region 1 is independent with each other, different sample panels generated by each SNP genotype fixed are actually samples with different population structures, which could be regarded as different biological replicates to a broader sense. Then mean (corrected) P value of each SNP of region 2 in Pa matrix (each row) was calculated to represent the real significance level (Figure 1a). The significant threshold was determined by a stringent modified Bonferroni correction of 0.001/(SNP number of region 1 × SNP number of region 2). 
To fine map region 1, Epistatic Effect Index (EEI) were proposed to portray the epistatic effect impact of region 1 on region 2, which is defined by the formula of 

Where Pej represents the P value for the association between trait and each significant SNP of region 1 with full sample panel,  represents the lower P value of matrixes Ph1 and Ph2 as described above. The higher the EEI indicates higher impact of epistatic SNP on the hypostatic SNP.
To evaluate to what extent a SNP could be a lead SNP (peak on Manhattan plot), the fitness coefficient of each significant SNP is calculated. Firstly, the LD coefficient (r2) is set to constant within limited region to simplify the situation, Si and Pi denote the physical location, and significant –log10(P) value respectively, the relation between Pi and Si could be defined as:

When , the formula could be transformed into  if the Pi value was overturned vertically (Figure 1b), then a linear regression could be defined between P and S (P value and physical location distance between SNPi and SNPcausal respectively). The fitness to what extent a significant SNP could be a peak can then be described as the correlation coefficient (R) between  and . Theoretically, the higher positive R value indicates higher possibility of a given SNP to be the lead SNP, which could be adopted as a reference index for causal variant judgement.
To better illustrate EBFM strategy, leaf traits of soybean was taken as an example. Dataset employed in this study including 1061 soybean accessions collected across China, leaf length to width ratio (LLWR) was phenotyped and GWAS analysis revealed that two associated regions on chromosome 19 and 20 were identified, hereafter designated as qLLWR19-1 and qLLWR20-1 respectively (detailed GWAS analysis of all soybean leaf traits will be displayed in another article). The imputated SNP density of these two regions were 4.4 and 8.2 SNP/kb respectively. qLLWR20-1 (Chr20:34,752,555..37,061,502) was overlapped with the Ln mapping region (Fang et al., 2013; Jeong et al., 2011; Jeong et al., 2012), qLLWR19-1 (Chr19:44,426,228..45,399,939) embraced the region (Chr19:45,143,539..45,150,769) responsible for leaf area, and Ln showed epistatic effect on qLLWR19-1 by SNP-fixing method (Fang et al., 2017). 
To fine map these two regions, qLLWR20-1 and qLLWR19-1 were designated as region 1 and region 2 respectively. There were 592 and 700 significant SNPs identified (by EMMAX) for qLLWR20-1 and qLLWR19-1, defining the association regions of 2.3Mb and 973.7kb respectively (Figure 1c and d). By EBFM analysis, the average subset sample panel size was 806, and two apparent peaks with distance of 331.97kb within qLLWR19-1 were identified using a threshold of 8.62 (-log10(592×700)) (Figure 1e, g). Both of these two peaks showed fitness coefficient of larger than 0.7 (Figure 1h), indicated high possibility to be two distinct QTLs (qLLWR19-1.1 and qLLWR19-1.2 respectively). Taken both corrected P value and fitness into consideration, qLLWR19-1.1 and qLLWR19-1.2 were defined as 10.7kb and 51.6kb respectively considering the LD block size, which reduced the mapping region from 973.7kb to 62.3kb (sum of qLLWR19-1.1 and qLLWR19-1.2 regions). Notably, qLLWR19-1.2 (Chr19:45,132,093..45,183,701) was in agreement with the region identified by Fang et al. (2017), but qLLWR19-1.1 was obviously a distinct novel genetic locus.
For the qLLWR20-1 region, mean EEI of each SNP showed roughly normal distribution, and a physical span of 276.7kb (Chr20:35,819,645..36,096,416) was defined by fitness coefficient larger than 0.7 (Figure 1f, i, and j). The EEI of qLLWR20-1 peaked within the second exon of the Ln causal gene (Glyma.20G116200, Chr20:35,828,042) (R=0.86) (Figure 1j, k). This locus had been reported previously (Jeong et al., 2012; Sayama et al., 2017). The transversion of G (Ln: broad leaf) to C (ln: narrow leaf) on this locus changed Asp into His at amino acid level, and then increased LLWR in ln significantly (Figure 1k). Comparison of results before and after EBFM analysis demonstrated that association significance of qLLWR19-1.1 increased a lot, however that of qLLWR19-1.2 decreased to limited extent when Ln (Chr20:35,828,042) was fixed (GG) (Figure 1l), suggested that contribution of qLLWR19-1.1 to LLWR might be concealed by ln. This was then confirmed by interaction analysis between qLLWR20-1 and qLLWR19-1.1 using Two-way ANOVA (Figure 1m, P < 0.001), however no interaction was observed between qLLWR20-1 and qLLWR19-1.2 (Figure 1m, P > 0.05). 
Based on gene models annotated in Glycine max Wm82.a2.v1 (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Gmax) (Schmutz et al., 2010), there was only 1 gene (Glyma.19G190300) located within qLLWR19-1.1 (10.7kb), which encoded a protein with unknown function. For this unknown protein, there were two domains, namely DUF3475 and DUF668, were identified by InterProScan (Jones et al., 2014). These two domains were reported to be existed in PSI as well, which was functionally characterized to regulate growth, including the leaf area, in Arabidopsis thaliana (Stührwohldt et al., 2014), strongly implied that Glyma.19G190300 would be possibly one of the causal genes of LLWR. Further analysis revealed that the lead SNP (Chr19:44,797,369) within qLLWR19-1.1 region was located within promoter (-315) of Glyma.19G190300, and this substitution site was presumably the AT-hook, and as well as TBP (TATA Binding Protein) and SEF1 (Soybean Embryo Factor 1) binding site (featured with taTTTATg and ATATTtatg respectively) predicted by PlantPAN 2.0 (http://PlantPAN2.itps.ncku.edu.tw) (Chow et al., 2016) (Figure 1n). When Ln (GG) was fixed, the average LLWR of samples with TT (Chr19:44,797,369) was significantly higher than that of sample with genotype of GG (Student’s t-test, P < 110-40), whereas in the ln (CC) subsample panel, no significant difference was observed in terms of LLWR between TT and GG (Figure 1n) (Student’s t-test, P > 0.05). Taken all those findings together, Glyma.19G190300 was highly persuadable to be regulated by Ln locus, and confirmation of the role of this gene in leaf trait is under investigation.
In this study, EBFM pipeline provided genetic information from the view of epistasis, and simultaneously reduced two associated regions for leaf traits in soybean to a great extent (~1/10), of which Ln has been previously confirmed and candidate gene of a novel genetic locus was analyzed as well, indicated a high reliability of EBFM strategy in fine mapping. With the trend of decreased sequencing price, large-scale GWAS panel has becoming easier to access, and wider application of EBFM could be expected. 
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Figure Legend
Figure 1. EBFM analysis on soybean leaf length to width ratio. (a) Flow chart of EBFM strategy. (b) Rationale of fitness coefficient calculation. (c)-(d) Manhattan plot of qLLWR19-1 and qLLWR20-1 respectively, red, blue, and black dash line indicate threshold of -log10(0.1, 0.2, 0.5/SNP number) respectively. (e)-(f) Heatmap of Pa matrix and EEI matrix (transformed by -log10) obtained in EBFM analysis. (g) Manhattan plot of corrected P value of each significant SNPs within qLLWR19-1. Two peaks in red indicating qLLWR19-1.1 and qLLWR19-1.2. (h) Fitness coefficient of significant SNPs within qLLWR19-1. (i) EEI of significant SNPs within qLLWR20-1, Ln is indicated in red. (j) Fitness coefficient scatter plot of EEI of significant SNPs within qLLWR20-1, Ln is indicated by red. (k) Regional display of -log10(P), LD heatmap, gene structure of Ln and flanking region (He et al., 2020). (l) Comparison of association significance of each SNP within qLLWR19-1 with Ln fixed (GG). (m) Interaction analysis between qLLWR20-1 and qLLWR19-1 using two-way ANOVA. (n) Regional display of -log10(P), LD heatmap, gene structure of Glyma.19G190300 and flanking region.
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