


Exogenous menadione sodium bisulphite increases pigments, osmoprotectants and alters metabolism to attenuate cadmium toxicity on growth and yield in summer squash (Cucurbita pepo L.)
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Running Title: MSB-priming reduces subcellular Cd to increase productivity

Novelty Statement: 
· The ability of summer squash to compartmentalize Cd at subcellular level exhibited its tolerance capacity and adaptability
· Cd uptake and transport interacted with uptake and transport of Ca, Mg and Fe and decreased plant productivity
· MSB-priming altered subcellular Cd accumulation pattern, and thus reduced its toxicity in chloroplasts and cell membranes
· Further, MSB-priming altered primary metabolism and increased growth and yield in summer squash
Abstract		
The menadione sodium bisulphite (MSB) is hydrophilic, and has been suggested a defensive molecule against different biotic and abiotic stresses. Cadmium (Cd) is highly mobile and even its minute amount induces toxicity in different organisms including plants. The experiment was conducted to elucidate whether seed priming with MSB could induce Cd tolerance in summer squash. The seed were primed with 0, 10 and 20 mM MSB and sown in pots filled with clean and dried sand saturated with Hoagland’s nutrients solution supplemented with different Cd concentrations (0 and 0.1 mM). The Cd stress reduced growth and contents of chlorophyll (Chl), osmoprotectants (soluble sugars, free amino acids, soluble proteins) and yield while increased oxidants such as hydrogen peroxide (H2O2) and malondialdehyde (MDA) and secondary metabolites (total phenolics and flavonoids). The Cd stress increase shoot and root Fe and Ca2+ concentration while decreased shoot and root Mg2+ concentration. The summer squash transported Cd to shoot and compartmentalized in the cells to avoid Cd toxicity. However, the plants raised from seed primed with MSB had higher contents of photosynthetic pigments, secondary metabolites, and osmoprotectants while low contents of oxidants when under Cd stress. Further, MSB-priming attenuated the toxicity of Cd on nutrients acquisition and increased growth and yield in summer squash. The MSB-primed altered Cd compartmentalization at sub-cellular level and mediated accumulation in the cell wall and soluble fraction rather than in chloroplasts and cell membranes. Overall, MSB-priming (10 mM) was much more effective and increased growth and yield under Cd stress in summer squash.
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Introduction
The Cd toxicity in different plants is well documented (Liu et al. 2015; Haider et al. 2021). Different crop species vary in their Cd content that mainly depends on translocation of Cd from root to shoot (Sun et al. 2019; Hussain et al. 2021). Once up taken by plants, Cd increases the tissue contents of oxidants such as MDA and H2O2 (Chen et al. 2020), and reduces leaf and root growth (Zanella et al. 2016). Its accumulation increases the contents of osmoprotectants such as total soluble proteins, and total phenolics as well as the activities of enzymatic antioxidants (Kolahi et al. 2020). Further, Cd reduced the photosynthesis that was associated with Cd-mediated disrupted chloroplast structure (Song et al. 2019; Chen et al. 2020). 
The Cd compartmentalization at the subcellular level is very important for overall Cd accumulation and tolerance in plants (Xin et al. 2013). Subcellular distribution of Cd mainly occurs in four  different fractions such as cell wall fraction, organelle-rich fraction, membrane-containing fraction, and soluble fraction (Liu et al. 2014). Major sites for Cd compartmentalization in the cell are cell wall or soluble fractions (Wang et al. 2008). Plants can avoid Cd toxicity through decreasing free Cd concentration in the cytosol. Zhou et al. (2017) found that Cd accumulation significantly decreased biomass in four apple rootstocks. They suggested that through Cd immobilization in the cell wall and soluble fraction (most likely in vacuole) and converting it into pectate- or protein-integrated forms as well as undissolved Cd phosphate forms, the apple rootstocks were able to reduce its mobility and toxicity. Further, Cd interferes with some micronutrients and decreases their uptake and reduces growth of plants (Choppala et al. 2014).
Of menadione derivatives, MSB is hydrophilic (Rao et al., 1985) that exists in both natural and synthetic forms. The MSB could play vital role against oxidative stresses in bacteria, mammals, fungi and plants (Mongkolsuk et al., 1998; Sun et al., 1999). Its defensive role against several plant pathogens in different plant species has been widely demonstrated (Borges et al., 2014, 2009). Due to its hydrophobic nature, it can easily enter cell organelles mediated by membrane passage, where it produces H2O2, OH and O˗2 radicals (Lehmann et al., 2012). However, wide ranges of MSB concentrations exert beneficial effects in plants exposed to both stressed and non-stressed conditions. For instance, the exogenous MSB enhanced development of alfalfa callus and tomato plants, and stimulated rooting of mung bean cuttings. Further, its application increased the effect of IAA three to four times on tomato, cucumber, capsicum and corn plants (Rao et al., 1985). The exogenous MSB under minor oxidative spurt induced chilling tolerance in zea mays (Prasad et al., 1994). Seed priming with MSB induced resistance in Arabidopsis against a pathogenic strain (Borges et al., 2009). Foliar treatment of MSB (100 µM) increased Cd tolerance that was linked with the higher contents of secondary metabolites and higher activities of enzymatic antioxidants in okra at early growth stage (Rasheed et al., 2018). Recently, Ashraf et al. (2019) reported that 100 mM foliar treatment of MSB mitigated the effects of salinity by increasing the contents of free amino acids and proline in two okra cultivars.
Summer squash (Cucurbita pepo L.) is morphologically diverse species, and is widely cultivated throughout the world. Different vegetables and plants have different capacity of heavy metal uptake (Mourato et al., 2015). Most of the studies using MSB as exogenous treatment studied its effects under biotic or salt stress at early growth stages of plants. The literature about the long lasting effects of MSB on yield attributes of crop species exposed to heavy metals is very limited. The effects of MSB on different osmolytes, photosynthetic pigments, and yield characteristics of plants exposed to heavy metals need to be explored. Further, the heavy metal bioavailability and the type of crop species primarily determine the metal up take. For instance, the heavy metals accumulation in pumpkin biomass were not linked with the concentrations in the soil (Danilcenko et al., 2015). Exposure of summer squash to Cd caused reduction in Chl contents, and thus in growth (Galal, 2016). In this context, we hypothesized that exogenous MSB might reverse the Cd-induced perturbations in physio-biochemical attributes and decrease subcellular Cd accumulation in summer squash. Thus, the main purpose of the current work was to evaluate whether seed priming with MSB could increase osmolytes, photosynthetic pigments and uptake of some nutrients and alter subcellular Cd compartmentalization to attenuate Cd-induced toxicity on growth and yield in summer squash.
Materials and Methods
The summer squash (Cucurbita pepo L.) seeds were surface sterilized with 0.1% sodium hypochlorite for 5 min and then washed twice with double distilled water. The seeds were primed with different concentrations (0, 10, 20 mM) of MSB for 24 h. The five seeds were sown in sand-filled pots (8 L) supplemented with Hoagland’s nutrient solution with or without addition of CdCl2 (0 and 0.1 mM Cd, respectively). After germination, three equal size plants per pot were retained. The data for various growth attributes, photosynthetic pigments, oxidative stress indicators, osmoprotectants and enzymatic and non-enzymatic antioxidants was collected after 35 d of germination at the vegetative stage whereas data for yield attributes were collected after 70 days of germination. The experiment was performed with four replicates using a completely randomized design (CRD).
Growth and photosynthetic pigments
The plants were uprooted and separated carefully to determine root and shoot lengths and root and shoot fresh weights. The Chl contents were determined using fresh leaf tissues extracted in 80% acetone and the absorbance was taken at 663, 645 and 480 nm. The Chl and carotenoids contents were calculated as described earlier (Arnon, 1949; Kirk and Allen, 1965). 
Determination of total phenolics, flavonoids, AsA and anthocyanins
Total phenolics were assayed by using the Folin-Ciocalteu reagent (Wolfe et al., 2003). The total flavonoids were determined as described earlier (Zhishen et al., 1999). The AsA concentration was estimated by following the method of Mukherjee and Choudhuri (1983). The fresh leaf sample was used for the estimation of anthocyanins (Kubo et al., 1999). 
Estimation of total sugars, proteins, amino acids and proline contents
The total soluble sugars were assayed using the method of Riazi et al. (1985). The total soluble proteins were assayed as detailed earlier (Bradford, 1976). The total free amino acids were determined by following the method of Hamilton and Slyke (1943). The proline contents were assayed as reported earlier (Bates et al., 1973).
Oxidants (MDA and H2O2) and activities of CAT and POD
The Dhindsa et al. (1981) method was used to assay the contents of MDA in fresh leaf material. The Velikova et al. (2000) method was used for the estimation of H2O2 contents in fresh leaf sample. The fresh leaf was homogenized in phosphate buffer and the extract was taken for the estimation of CAT and POD activities. The CAT activity was estimated as reported earlier (Aebi, 1984). The POD activity was assayed by following the method of Chance and Maehly (1955). The activities were expressed as U/mg protein.
Mineral nutrients
Dry material (0.1 g) of shoot and root was finely ground and digested on hot plate using HNO3 and H2O2 until the solution became clear (Wolf, 1982). The concentrations of minerals (Mg, Fe and Ca) were determined by using an atomic absorption spectrophotometer (Hitachi Polarized Zeeman AAS, Z-8200, Japan) following the conditions described in AOAC (1990). 
Plant tissue Cd fractionation
Fresh leaves were homogenized and separated into four different fractions (cell wall and cell wall debris, chloroplasts, cell membranes and other organelles and soluble fraction) by following the method of Wu et al. (2005) with slight modifications. Fresh leaf (5 g) was homogenized in 14 ml pre-cold buffer solution (250 mM sucrose, 1.0 mM dithioerythritol (C4H10O2S2), 50 mM tris, 5 mM ascorbic acid, pH 7.5 and 10 drops of triton X100/1 liter). The homogenized solution was passed through nylon cloth (240 µM), liquid was squeezed from the residue. Residue on the nylon cloth was washed twice with buffer and remarked as fraction 1 (cell wall and cell wall debris). Remaining filtrate was centrifuged at 1500 g for 10 min and the pellet was designated as fraction 2 (chloroplasts). The supernatant was centrifuged at 15,000 g for 35 min and the pellet was designated as fraction 3 (cell membranes and other organelles), while the supernatant as fraction 4 (soluble fractions, vacuoles and cytoplasm). All the four fractions were transferred to crucibles and oven dried for one to two weeks. All the four fractions were digested separately using HNO3 and H2O2 on the hot plate (Wolf, 1982). The QA/QC procedures were followed and the Cd concentration was determined by using the atomic absorption spectrophotometer (Hitachi Polarized Zeeman AAS, Z-8200, Japan) following the conditions described in AOAC (1990). The operating conditions of the instrument for the determination of Cd were; wavelength (228.8 nm), silt width (1.3 nm), lamp current (7.5 mA), burner head (standard type), flame (air-C2H2), burner height (5 mm), oxidant gas pressure (160 kPa), and fuel gas pressure (6 kPa). The standards were prepared using commercially available stock solution (Applichem 1000 ppm) after diluting with milli-Q water. All the working glass apparatus were dipped in the 8 N HNO3 overnight following the washings with milli-Q water before using them for analytical process.
Yield attributes
Number of branches, flowers and fruits were counted manually per plant. Fruits were separated carefully for the determination of fresh weight and after drying in an oven for one week, dry weight recorded. The fruit moisture contents (%) were determined by using the following formula; [(Fresh weight – Dry weight) / Fresh weight] × 100.
Results	
MSB-priming increases pigments and growth in Cd-stressed summer squash
The Cd stress significantly (P ≤ 0.001) reduced growth attributes i.e., root and shoot lengths and fresh and dry weights. The exogenous application of 20 mM MSB increased root and shoot lengths while 10 mM MSB increased root and shoot dry weights under Cd stress (Fig. 1). Further, 10 mM of MSB increased shoot fresh weight under both control and Cd-stressed conditions. A remarkable reduction in Chl a, Chl b, total Chl and carotenoids contents was observed under Cd stress. Exogenous application of MSB significantly increased Chl a, Chl b and total chlorophylls as well as carotenoids under different Cd regimes (Fig. 2). Overall, seed priming with MSB improved contents of photosynthetic pigments in summer squash.
MSB-priming increases osmolytes and alters metabolism irrespective of growth conditions
The exposure of summer squash to Cd significantly (P ≤ 0.001) increased phenolics and flavonoids contents. The priming with low concentration of MSB was much more effective in enhancing phenolics under both control and stressed conditions. The higher concentration of MSB decreased flavonoids under Cd stress (Fig. 3). In contrast, higher concentration of MSB was much more effective in increasing AsA concentration in summer squash exposed to Cd stress. The exposure to Cd stress decreased anthocyanins contents in summer squash. However, priming with MSB increased anthocyanins under irrespective of growth conditions. The Cd stress significantly reduced total soluble sugars, free amino acids and total soluble proteins in summer squash. In contrast, Cd stress increased proline contents. Plants raised from MSB-primed seed had significantly (P ≤ 0.001) higher total soluble proteins, soluble sugars as well as total free amino acids contents. In this context, the higher concentration of MSB was much more effective in increasing soluble sugars while low concentration in case of soluble proteins and proline in summer squash when under Cd stress (Fig. 3). 
MSB-priming modulates oxidants and enzymatic antioxidants
The exposure of summer squash to Cd significantly (P ≤ 0.01) increased oxidative stress indicators such as H2O2 and MDA. The priming with MSB increased H2O2 contents under both control and Cd-stressed conditions. In contrast, priming with  higher concentration of MSB decreased MDA contents under Cd stress (Fig. 4). The Cd stress significantly increased the POD activity while decreased CAT activity. However, the exogenous 10 mM MSB enhanced the activity of POD while MSB treatment decreased CAT under Cd-stressed conditions (Fig. 4).
MSB-priming alters tissue ionic concentrations to attenuate Cd stress
Exposure to Cd significantly altered nutrients uptake and transport to the shoot in summer squash. For instance, Cd increased tissue Fe and Ca2+ concentrations while decreased Mg2+ concentrations (Fig. 5). The exogenous MSB increased Mg2+ uptake in the roots while decreased its transport to the shoots. Thus, shoot Mg2+ concentration decreased under both control and Cd-stressed conditions in MSB-treated plants. The exogenous MSB, especially its low concentration increased tissue (shoot and root) Fe concentrations irrespective of growth conditions. The low concentration of MSB increased shoot Ca2+ concentration while higher MSB concentration increased Ca2+ accumulation in the roots under Cd stress (Fig. 5). Overall, the exogenous MSB attenuated the effects of Cd on tissue Ca2+, Mg2+ and Fe concentrations.
MSB-priming alters subcellular tissue compartmentalization to attenuate Cd toxicity
The subcellular compartmentalization of Cd in the fresh shoot samples of summer squash was investigated. The results showed that Cd mainly compartmentalized in the cell wall fraction followed by in chloroplast, soluble fraction and cell membranes (Fig. 6). Under Cd stress, the Cd accumulation pattern was as follows: cell wall > chloroplast > soluble fraction > cell membrane. Although the 20 mM concentration of MSB decreased uptake and subcellular accumulation of Cd, the pattern of accumulation was same i.e., cell wall > chloroplast > soluble fraction > cell membrane. In contrast, 10 mM MSB not only decreased the uptake of Cd but also altered its subcellular accumulation pattern i.e., more Cd accumulated in cell wall followed by soluble fraction, chloroplast and cell membrane.
[bookmark: _GoBack]MSB-priming increases yield attributes irrespective of growth conditions
Cd stress significantly (P ≤ 0.001) reduced different yield parameters i.e., number of flowers, number of branches per plant, number of fruits, fruit fresh and dry weights and fruit moisture contents (Fig. 7). The exogenous MSB especially 10 mM concentration increased different yield attributes irrespective of growth medium. Overall, the exogenous MSB enhanced the yield of summer squash plants irrespective of growth conditions.
Discussion
The Cd stress not only affects plant development but also threatens human health because directly or indirectly the human nutrition depends on plants (Zhou et al., 2016; Romero-Puertas et al., 2019). In the present study, Cd stress caused significant reduction in photosynthetic pigments and inhibited growth in summer squash. It is earlier reported that Cd accumulates in root (Khaliq et al., 2016), and thus reduces growth in different plants. For instance, exposure to Cd reduced biomass in maize (Qutab et al., 2017), and cotton (Liu et al., 2015). Further, Cd has been shown to bind into the Chl by substituting Mg, and thus reduces Chl contents (Rydzyński et al., 2019). However, in the present study, MSB-priming increased photosynthetic pigments (Chl and carotenoids) and enhanced plant growth under Cd stress. The MSB acts like plant growth regulators (Rao et al., 1985), and plays important defensive role against both abiotic and biotic stresses (Jiménez-Arias et al., 2015). For instance, under salinity stress, foliar application of MSB increased Chl contents and fresh and dry weights in Arabidopsis thaliana (Jiménez-Arias et al., 2015) and in okra (Ashraf et al., 2019). Further, foliar application of MSB induced Cd resistance in okra (Rasheed et al., 2018). The MSB-priming mediated beneficial effects on growth of summer squash exposed to Cd stress could be explained in terms of Cd influences on plant water relations and stomatal regulation. For instance, the 5-day Cd treatment (50 µM) did not affect relative water contents in Arabidopsis thaliana, Vicia faba and Commelina communis possibly by regulating stomatal opening in ABA-independent manner (Perfus-Barbeoch et al., 2002). They further suggested that Cd entered the cytosol through Ca2+ channels and ultimately regulated the guard cell activity. In contrast, (Poschenrieder et al., 1989) found less relative water contents and more stomatal resistance in Cd-treated bush bean (Phaseolus vulgaris L. cv. Contender) plants. Taken together, our results suggested that MSB treatment not only increased cell turgidity but also increased cell number that was evident from higher shoot and root fresh and dry weights.  
Plants usually accumulate osmolytes and alter metabolism to cope with different abiotic stresses (Benjamin et al., 2019; Qin et al., 2020; Saleh et al., 2020). In the present study, exposure to Cd altered plant primary metabolism and caused increase in total flavonoids, phenolics, proline and AsA contents while decreased anthocyanins, total soluble proteins, soluble sugars and free amino acids in the summer squash. The effects of Cd on osmolytes and secondary metabolites could vary depending on crop species, and the exposure time to different stresses. For instance, the Cd stress altered wheat metabolism by changing the contents of major biochemical constituents such as proteins, soluble sugars and free amino acids (Shukla et al., 2003). In white lupin (Lupinusalbus L., cv. Multolupa), soluble proteins and N-amino compounds significantly decreased in the nodules under Cd stress (Carpena et al., 2003). In contrast, Cd stress significantly decreased flavonoids, total free amino acids and total soluble sugars while increased total phenolics and free proline contents in different wheat (Triticum aestivum L.) cultivars (Perveen et al., 2016). Similarly, in response to Cd treatment, free amino acids accumulation varied in Tillandsia species (Kováčik et al., 2014). The exogenous MSB increased contents of phenolics, flavonoids, anthocyanins, proline, AsA, total free amino acids, soluble proteins and soluble sugars in the summer squash when under Cd stress. Thus MSB-priming exerted beneficial effects and increase Cd tolerance of summer squash. Recently, the beneficial effects of MSB were reported on okra plant metabolism under different stresses (Ashraf et al., 2019; Rasheed et al., 2018). Overall, our results suggested that MSB-treatment diverted plant primary metabolism and increased osmolytes synthesis and accumulation, and thus modulated growth and yield in summer squash.
The Cd toxicity inhibits growth mainly through oxidative damage, nutrients imbalance and altering primary metabolism (Hussain et al., 2017). Our study indicated that Cd stress increased H2O2 and MDA contents while reduced CAT and increased POD activities. However, MSB-priming did not lower concentration of H2O2 while higher MSB level decreased MDA contents in the summer squash plants. Such minor raised levels of oxidants could be helpful to initiate the synthesis of antioxidants especially non-enzymatic antioxidants to regulate growth under stressed conditions. Nonetheless, MSB-mediated reductions in oxidative stress were reported in okra under Cd (Rasheed et al., 2018) and salt stress (Ashraf et al., 2019). However, in okra, the lower oxidative stress was linked with higher activities of antioxidant enzymes. However, the MSB-priming did not increase the activity CAT in Cd-stressed summer squash plants. In contrast, 10 mM MSB increased the activity of POD under Cd-stressed conditions. Thus, the MSB-mediated decrease in Cd toxicity in summer squash plants was largely due to the higher levels of non-enzymatic antioxidants, accumulation of osmoprotectants and secondary metabolites. 
The exposure to Cd may alter nutrients uptake and translocation thereby reducing growth and development in different crop species (Qin et al., 2020). Further, The Cd stress could alter different minerals on concentration dependent and tissue dependent manner. For instance, 20 μM Cd increased Ca concentration in the roots, shoots and developing fruits while the reverse was true for 100 μM Cd concentration (Hédiji et al., 2015). In the present study, Cd increased tissue Fe and Ca2+ concentrations while decreased Mg2+ concentrations in the summer squash. Earlier some studies have shown the interaction of Cd with the uptake of Ca and Mg such as in okra seedlings (Rasheed et al., 2018). Further, the exposure of potato, tomato and lettuce to Cd and Pb resulted in higher Fe, Ca and Mg accumulation in dietary parts (Khan et al., 2016). However, the exogenous MSB attenuated the toxic effects of Cd on minerals uptake and transport, and thus summer squash plants showed better growth and yield under Cd stress. 
Plants readily uptake Cd and transport to the shoots where it causes toxicity at various levels depending upon crop species. Under Cd stress, plants compartmentalize it and/or chelate it to reduce its toxicity. However, the Cd compartmentalization plays an important role for Cd storage and tolerance in plants at subcellular level (Xin et al., 2013). In the present study, summer squash plants compartmentalized Cd mainly in the cell wall fraction and chloroplast to reduce its toxicity in the shoots. The Cd in chloroplast could replace Mg of chlorophyll, and thus affect photosynthesis and growth. Cell wall act as barrier for the Cd uptake, therefore it bind with Cd and confined its entrance into the cytoplasm (Gallego et al., 2012). In our recent study, most of the Cd transported was deposited in the cell wall. The higher Cd accumulation in the cell wall is already reported in apple rootstock (Zhou et al., 2017) and Bechmeria nivea (L.) Gaud. (Wang et al., 2008). The MSB-priming reduced Cd up take and its accumulation at subcellular level. Further, MSB-priming (10 mM) altered its subcellular accumulation pattern i.e., more Cd accumulated in the cell wall followed by soluble fraction (possibly vacuole), chloroplast and cell membrane. The compartmentalization of metal in the vacuole is a good strategy to inhibit its accumulation in other organelles of cells, and induces metal tolerance (Bhatia et al., 2005). Our results are supported by some earlier studies using Brassica napus (Mwamba et al., 2016), and cucumber (Yan et al., 2019) where higher accumulation of Cd was observed in the cell wall. Thus, MSB-priming effectively attenuated the Cd toxicity and increased growth and yield in the summer squash. The MSB-mediated less transport of Cd to the shoot and altered Cd accumulation at the subcellular level could be due to the beneficial effects of MSB on synthesis of osmolytes and chelates that reduced its uptake and facilitated its compartmentalization at subcellular level. 
Conclusion
The Cd stress altered metabolism, nutrients acquisition and reduced growth and yield in summer squash. However, MSB-priming mediated increase in photosynthetic pigments, secondary metabolites, and osmoprotectants while reduced oxidants and attenuated the toxicity of Cd on nutrients acquisition. Further, MSB-priming altered Cd compartmentalization at sub-cellular level and mediated accumulation in the cell wall and soluble fraction (vacuole) rather than in the chloroplasts and cell membranes. Overall, priming with 10 mM MSB was much more effective in increasing growth and yield under Cd stress in summer squash.
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Fig. 1. Influence of seed priming with menadione sodium bisulfite (MSB) on the growth attributes of summer squash (Cucurbita pepo L.) grown under control (0 mM) and Cd stress (0.10 mM). Data are mean ± SE (n = 4); same letters on bars of each parameter show non-significant difference (Duncan’s Multiple Range test at 5% probability level).



Fig. 2. Influence of seed priming with menadione sodium bisulfite (MSB) on the photosynthetic pigments of summer squash (Cucurbita pepo L.) grown under control (0 mM) and Cd stress (0.10 mM). Data are mean ± SE (n = 4); same letters on bars of each parameter show non-significant difference (Duncan’s Multiple Range test at 5% probability level).


   
Fig. 3. Influence of seed priming with menadione sodium bisulfite (MSB) on non-enzymatic antioxidants and osmolytes contents of summer squash (Cucurbita pepo L.) grown under control (0 mM) and Cd stress (0.10 mM). Data are mean ± SE (n = 4); same letters on bars of each parameter show non-significant difference (Duncan’s Multiple Range test at 5% probability level). Sol., soluble.


  
Fig. 4. Influence of seed priming with menadione sodium bisulfite (MSB) on oxidative stress indicators and activities of some enzymatic antioxidants of summer squash (Cucurbita pepo L.) grown under control (0 mM) and Cd stress (0.10 mM). Data are mean ± SE (n = 4); same letters on bars of each parameter show non-significant difference (Duncan’s Multiple Range test at 5% probability level). MDA, malondialdehyde; H2O2, hydrogen peroxide; CAT and POD, catalase and peroxidase activities, respectively. 



Fig. 5. Influence of seed priming with menadione sodium bisulfite (MSB) on some mineral nutrients of summer squash (Cucurbita pepo L.) grown under control (0 mM) and Cd stress (0.10 mM). Data are mean ± SE (n = 4); same letters on bars of each parameter show non-significant difference (Duncan’s Multiple Range test at 5% probability level). FW, fresh weight; DW, dry weight.



Fig. 6. Influence of seed priming with menadione sodium bisulfite (MSB) on the accumulation of Cd in different organelles of summer squash (Cucurbita pepo L.) exposed to Cd stress (0.10 mM). Data are mean ± SE (n = 4); same letters on bars show non-significant difference (Duncan’s Multiple Range test at 5% probability level).


Fig. 7. Influence of seed priming with menadione sodium bisulfite (MSB) on yield characteristics of summer squash (Cucurbita pepo L.) grown under control (0 mM) and Cd stress (0.10 mM). Data are mean ± SE (n = 4); same letters on bars of each parameter show non-significant difference (Duncan’s Multiple Range test at 5% probability level).
Control	0.6454972243679028	0.841625411530178	0.54006172486731985	0.6454972243679028	0.841625411530178	0.54006172486731985	 0 mM	10 mM	20 mM	22.5	25	27	Cadmium 	0.66143782776614768	0.42695628191498508	0.841625411530178	0.66143782776614768	0.42695628191498508	0.841625411530178	 0 mM	10 mM	20 mM	15.75	19.125	21	
Shoot length (cm) 

Control	2.8577380332470436E-2	8.6059572390293118E-2	3.1091263510296199E-2	2.8577380332470436E-2	8.6059572390293118E-2	3.1091263510296199E-2	 0 mM	10 mM	20 mM	1.7400000000000002	1.8125	2.1399999999999997	Cadmium 	2.0966242709015252E-2	1.4433756729740658E-2	2.657536453183661E-2	2.0966242709015252E-2	1.4433756729740658E-2	2.657536453183661E-2	 0 mM	10 mM	20 mM	0.73250000000000004	1.5249999999999966	1.4024999999999963	
Root fresh weight (g) 

Control	0.40824829046386302	0.40824829046386302	0.6454972243679028	0.40824829046386302	0.40824829046386302	0.6454972243679028	 0 mM	10 mM	20 mM	14	17	13.5	Cadmium 	0.6454972243679028	0.62915286960589745	0.47871355387816905	0.6454972243679028	0.62915286960589745	0.47871355387816905	 0 mM	10 mM	20 mM	8.5	10.75	10.25	
Shoot fresh weight (g) 

Control	2.8867513459481294E-3	2.4999999999999992E-3	2.8867513459481281E-3	2.8867513459481294E-3	2.4999999999999992E-3	2.8867513459481281E-3	 0 mM	10 mM	20 mM	4.5000000000000012E-2	5.2500000000000012E-2	5.5000000000000014E-2	Cadmium 	2.5000000000000092E-3	2.500000000000007E-3	2.5000000000000074E-3	2.5000000000000092E-3	2.500000000000007E-3	2.5000000000000074E-3	 0 mM	10 mM	20 mM	2.2500000000000006E-2	3.7500000000000006E-2	3.2500000000000001E-2	Menadione sodium bisulfite

Root dry weight (g) 

Control	8.1649658092772942E-3	2.0207259421636991E-2	9.1287092917527665E-3	8.1649658092772942E-3	2.0207259421636991E-2	9.1287092917527665E-3	 0 mM	10 mM	20 mM	0.32000000000000089	0.36500000000000032	0.33000000000000101	Cadmium 	1.0408329997330684E-2	1.4719601443879739E-2	1.1086778913041729E-2	1.0408329997330684E-2	1.4719601443879739E-2	1.1086778913041729E-2	 0 mM	10 mM	20 mM	0.16500000000000001	0.27	0.2225	Menadione sodium bisulfite

Shoot dry weight (g) 

Control	9.9847251344933025E-2	9.3919871487145978E-2	8.2707946263293475E-2	9.9847251344933025E-2	9.3919871487145978E-2	8.2707946263293475E-2	 0 mM	10 mM	20 mM	3.0769405699999997	3.6431381812500012	3.0932403824999999	Cadmium 	8.8933099547921751E-2	2.6690753926667841E-2	0.11938773316186456	8.8933099547921751E-2	2.6690753926667841E-2	0.11938773316186456	 0 mM	10 mM	20 mM	1.6466200462499998	1.9530677362499997	2.1545511725000002	
Chl a (mg g-1 FW) 



Control	3.1007571937142462E-2	7.4511049191091333E-2	0.10372403247359994	3.1007571937142462E-2	7.4511049191091333E-2	0.10372403247359994	 0 mM	10 mM	20 mM	1.8197794799999998	2.3615820349999987	2.0626033699999997	Cadmium 	3.0976473435067192E-2	2.5801539418496548E-2	6.5089776645205724E-2	3.0976473435067192E-2	2.5801539418496548E-2	6.5089776645205724E-2	 0 mM	10 mM	20 mM	1.3884716949999998	1.624504575	1.5836663099999966	
Chl b (mg g-1 FW) 


Control	1.0427513110356995E-2	1.2193919406819119E-2	1.4901670546032801E-2	1.0427513110356995E-2	1.2193919406819119E-2	1.4901670546032801E-2	 0 mM	10 mM	20 mM	0.14109099999999999	0.16664999999999999	0.23888375000000001	Cadmium 	5.0647205911744939E-3	8.6467908642454752E-3	1.5062026966292882E-2	5.0647205911744939E-3	8.6467908642454752E-3	1.5062026966292882E-2	 0 mM	10 mM	20 mM	7.9947999999999991E-2	0.13734350000000001	0.17247699999999999	Menadione sodium bisulfite

Carotenoids (mg g-1 FW) 


Control	8.7487839729832664E-2	0.10294971901462505	0.15458393345358171	8.7487839729832664E-2	0.10294971901462505	0.15458393345358171	 0 mM	10 mM	20 mM	4.8967200499999946	6.0047202162499813	5.1558437525	Cadmium 	6.0857122957279332E-2	4.9793631654684208E-2	0.13477485612847956	6.0857122957279332E-2	4.9793631654684208E-2	0.13477485612847956	 0 mM	10 mM	20 mM	3.0350917412500067	3.57757231125	3.7382174825000001	Menadione sodium bisulfite

Total Chl (mg g-1 FW) 


Control	1.2174671080912245E-2	2.7633895190414846E-2	1.391239837249904E-2	1.2174671080912245E-2	2.7633895190414846E-2	1.391239837249904E-2	0 mM	10 mM	20 mM	0.38731576524390326	0.41353658536585419	0.38104878048780544	Cadmium 	9.8096060874693133E-3	1.1583783137539641E-2	1.274701405199342E-3	9.8096060874693133E-3	1.1583783137539641E-2	1.274701405199342E-3	0 mM	10 mM	20 mM	0.53397619207317082	0.5764767835365856	0.4267256097560978	
Flavonoids (mg g-1 FW) 



Control	2.2745447278539735E-2	5.1588183542174856E-2	6.2294842346056867E-2	2.2745447278539735E-2	5.1588183542174856E-2	6.2294842346056867E-2	 0 mM	10 mM	20 mM	0.82727272727272549	1.211513863636364	0.93681818181818177	Cadmium 	5.4225545452436963E-2	1.1667896432626666E-2	2.731908938138598E-2	5.4225545452436963E-2	1.1667896432626666E-2	2.731908938138598E-2	 0 mM	10 mM	20 mM	1.4534090909090842	1.9506818181818182	1.6979545454545399	
Phenolics (mg g-1 FW) 


Control	1.7610710569029742E-3	1.8004129882070289E-2	1.9372277789109681E-2	1.7610710569029742E-3	1.8004129882070289E-2	1.9372277789109681E-2	0 mM	10 mM	20 mM	0.22147058823529425	0.24597058823529422	0.21735294117647086	Cadmium 	1.1851801790872139E-2	2.5716737785583508E-2	1.0167617942902522E-2	1.1851801790872139E-2	2.5716737785583508E-2	1.0167617942902522E-2	0 mM	10 mM	20 mM	0.29009803921568661	0.39995098039215643	0.5274460784313727	
Ascorbic acid (mg g-1 FW) 


Control	6.56039428297924E-2	6.4540308249099329E-2	4.4692234597670917E-2	6.56039428297924E-2	6.4540308249099329E-2	4.4692234597670917E-2	0mM	10mM	20mM	1.2054166666666668	1.6820833333333347	1.4070833333333332	Cadmium 	6.9169594984866134E-2	4.8131763593978867E-2	4.4819597234873138E-2	6.9169594984866134E-2	4.8131763593978867E-2	4.4819597234873138E-2	0mM	10mM	20mM	0.73208333333333364	1.0283333333333333	1.1416666666666666	Anthocynins content (A535 – A650 mg/g FW) 

Control	9.8875763798145708E-2	0.34880749227427343	0.36255721502497668	9.8875763798145708E-2	0.34880749227427343	0.36255721502497668	0 mM	10 mM	20 mM	16.021500000000003	19.05	21.205349999999971	Cadmium 	0.43476047045087551	0.52777046778563341	0.24744042506901262	0.43476047045087551	0.52777046778563341	0.24744042506901262	0 mM	10 mM	20 mM	12.84	15.325000000000006	18.075825000000005	
Sol. sugars (mg g-1 FW) 


Control	1.4924923227049898	1.2533787669070082	0.86934841500210414	1.4924923227049898	1.2533787669070082	0.86934841500210414	 0 mM	10 mM	20 mM	35.300000000000004	45.465000000000003	39.53	Cadmium 	1.3746878433544962	0.3091385881229764	0.66500626563464282	1.3746878433544962	0.3091385881229764	0.66500626563464282	 0 mM	10 mM	20 mM	22.69	30.509999999999987	25.509999999999987	
Sol. proteins (mg g-1 FW) 


Control	0.11295176781198189	2.7554659483638017E-2	8.198351234422796E-2	0.11295176781198189	2.7554659483638017E-2	8.198351234422796E-2	 0 mM	10 mM	20 mM	2.3691666666666666	2.5366666666666582	2.1916666666666673	Cadmium 	2.9949803684511632E-2	0.10465109579861796	8.9938250421546947E-2	2.9949803684511632E-2	0.10465109579861796	8.9938250421546947E-2	 0 mM	10 mM	20 mM	1.1924999999999999	1.4300000000000002	1.5133333333333319	Menadione sodium bisulfite

Amino acids (mg g-1 FW) 


Control	0.36152398050110884	0.10521387193586552	0.34029761846918899	0.36152398050110884	0.10521387193586552	0.34029761846918899	 0 mM	10 mM	20 mM	11.486666666666705	16.431111111111111	9.7533333333333356	Cadmium 	9.1343425593619298E-2	0.33632913039256407	9.1343425593619298E-2	0.33632913039256407	 0 mM	10 mM	20 mM	17.153333333333233	24.181111111111115	22.470000000000002	Menadione sodium bisulfite

Proline (µg g-1 FW) 


Control	7.213088658820161	4.5202769826637814	2.3778802535031147	7.213088658820161	4.5202769826637814	2.3778802535031147	 0 mM	10 mM	20 mM	328.1	321.35399999999993	349.82100000000003	Cadmium 	2.6614323211383732	8.3080923803241706	2.6614323211383732	8.3080923803241706	 0 mM	10 mM	20 mM	371.19500000000005	358.29599999999886	409.68300000000005	
MDA (nmol g-1 FW) 



Control	12.802180803805806	20.344430032156989	16.884410956066329	12.802180803805806	20.344430032156989	16.884410956066329	 0 mM	10 mM	20 mM	670.25	740.25	735.5	Cadmium 	13.90253776294098	8.2512625296577085	13.90253776294098	8.2512625296577085	 0 mM	10 mM	20 mM	811.25	941.33249999999782	933.5	
H2O2 (nmol g-1 FW) 

Control	3.5352993025070528E-2	8.9904256240551025E-2	4.0333058822527253E-2	3.5352993025070528E-2	8.9904256240551025E-2	4.0333058822527253E-2	0 mM	10 mM	20 mM	1.2879472891566257	1.6263087349397602	1.3691114457831322	Cadmium 	4.7058604238515656E-2	1.8995893687643282E-2	2.9787938077334254E-2	4.7058604238515656E-2	1.8995893687643282E-2	2.9787938077334254E-2	0 mM	10 mM	20 mM	1.0199527108433739	0.87201867469879601	0.88465662650602295	Menadione sodium bisulfite

CAT (U mg-1 protein) 


Control	0.28480067457101182	0.18294626720456827	0.2117074055961736	0.28480067457101182	0.18294626720456827	0.2117074055961736	0 mM	10 mM	20 mM	8.199623493975901	7.2453313253011906	5.5293674698795137	Cadmium 	0.49656694380290339	0.36432772523676465	0.27836640971702326	0.49656694380290339	0.36432772523676465	0.27836640971702326	0 mM	10 mM	20 mM	9.4182831325301084	10.579498493975899	9.1939759036144295	Menadione sodium bisulfite

POD (U mg-1 protein) 


Control	6.6500000000000004E-2	8.2565125809872492E-2	1.5435349040433005E-2	6.6500000000000004E-2	8.2565125809872492E-2	1.5435349040433005E-2	 0 mM	10 mM	20 mM	4.3335000000000008	3.7069999999999999	3.8055000000000003	Cadmium 	1.6028620235898967E-2	6.0736452536073328E-2	1.6028620235898967E-2	6.0736452536073328E-2	 0 mM	10 mM	20 mM	2.6519999999999997	2.0654999999999997	2.1225000000000001	
Shoot Mg2+ (mg g-1 DW) 



Control	7.8119566477718283E-2	0.10400320507881827	9.7671217186367981E-2	7.8119566477718283E-2	0.10400320507881827	9.7671217186367981E-2	 0 mM	10 mM	20 mM	3.2459999999999996	3.2440000000000002	3.4109999999999987	Cadmium 	3.3950945004030002E-2	3.3075670817082445E-2	3.3950945004030002E-2	3.3075670817082445E-2	 0 mM	10 mM	20 mM	2.2440000000000002	2.6280000000000001	2.8099999999999987	
Root Mg2+ (mg g-1 DW) 


Control	5.0570083382701064E-3	6.7305274681855407E-3	5.769219329048488E-3	5.0570083382701064E-3	6.7305274681855407E-3	5.769219329048488E-3	0 mM	10 mM	20 mM	0.21400000000000011	0.23440000000000011	0.22896500000000011	Cadmium 	1.084220149846577E-2	1.5152007567756057E-3	6.8019237474898631E-3	1.084220149846577E-2	1.5152007567756057E-3	6.8019237474898631E-3	0 mM	10 mM	20 mM	0.25319999999999998	0.31465000000000026	0.26899000000000001	
Shoot Fe (mg g-1 DW) 


Control	1.1633285577743464E-3	5.6789083458002698E-4	1.3149778198382929E-3	1.1633285577743464E-3	5.6789083458002698E-4	1.3149778198382929E-3	0 mM	10 mM	20 mM	0.24520000000000011	0.25265000000000004	0.2422500000000001	Cadmium 	1.1814539065631553E-3	1.7710637105046918E-3	1.5628499608087805E-3	1.1814539065631553E-3	1.7710637105046918E-3	1.5628499608087805E-3	0 mM	10 mM	20 mM	0.25375000000000003	0.26229999999999998	0.26465	
Root Fe (mg g-1 DW) 


Control	d
d
c

7.4833151911435913E-2	6.4807406984078872E-2	5.0990201264556813E-2	7.4833151911435913E-2	6.4807406984078872E-2	5.0990201264556813E-2	0mM	10mM	20mM	1.5000249999999968	1.7400000000000002	2.3799749999999977	Cadmium 	b
a
b

0.15370426148939481	4.2426406871192833E-2	8.660254037844424E-2	0.15370426148939481	4.2426406871192833E-2	8.660254037844424E-2	0mM	10mM	20mM	2.8949999999999987	3.3	2.67	Menadione sodium bisulfite

Shoot Ca2+ (mg g-1 DW) 


Control	0.18257418583505541	0.24281337140555828	0.31622776601683722	0.18257418583505541	0.24281337140555828	0.31622776601683722	 0 mM	10 mM	20 mM	3.4000000000000004	2.8749999999999987	3.2	Cadmium 	0.18257418583505541	0.21602468994692894	0.18257418583505541	0.21602468994692894	 0 mM	10 mM	20 mM	4.2	3.5999999999999988	4.5999999999999996	Menadione sodium bisulfite

Root  Ca2+ (mg g-1 DW) 


HP (0 mM MSB)	a
b
d
e

5.0006666222281733E-2	0.55577655881958166	0.47003616882107985	0.32594784858931131	5.0006666222281733E-2	0.55577655881958166	0.47003616882107985	0.32594784858931131	Cell wall	Chloroplast	Cell membrane	Soluble fraction	9.5500000000000007	7.6564999999999985	4.9880000000000004	4.0199999999999996	10 mM MSB	f
hi
i
i

0.28689632273697718	2.0138582373146328E-2	2.1266170318136709E-2	3.6643269049945311E-2	0.28689632273697718	2.0138582373146328E-2	2.1266170318136709E-2	3.6643269049945311E-2	Cell wall	Chloroplast	Cell membrane	Soluble fraction	2.923	0.71924999999999994	0.16550000000000001	0.46825	20 mM MSB	c
fg
gh
fg

4.8587335455514101E-2	9.7930566389321724E-2	6.8926742512129019E-2	7.4513421609801414E-2	4.8587335455514101E-2	9.7930566389321724E-2	6.8926742512129019E-2	7.4513421609801414E-2	Cell wall	Chloroplast	Cell membrane	Soluble fraction	6.4162500000000033	2.1602500000000004	1.4112499999999986	2.2725	
Cd concentration (µg g-1 FW)


Control	0.40824829046386302	0.62915286960589745	0.62915286960589745	0.40824829046386302	0.62915286960589745	0.62915286960589745	 0 mM	10 mM	20 mM	9	11.25	8.25	Cadmium 	0.28867513459481287	0.6454972243679028	0.28867513459481287	0.6454972243679028	 0 mM	10 mM	20 mM	5.5	7.5	6.5	
Number of branches 


Control	0.25	0.28867513459481287	0.25	0.25	0.28867513459481287	0.25	 0 mM	10 mM	20 mM	7.25	10.5	8.25	Cadmium 	0.28867513459481287	0.25	0.28867513459481287	0.25	 0 mM	10 mM	20 mM	4.25	7.5	6.25	
Number of flowers

Control	0.25	0.28867513459481287	0.28867513459481287	0.25	0.28867513459481287	0.28867513459481287	 0 mM	10 mM	20 mM	2.75	3.5	3.5	Cadmium 	0.28867513459481287	0.25	0.28867513459481287	0.25	 0 mM	10 mM	20 mM	1.25	2.5	2.25	
Number of fruits 

Control	8.9317612111684497	2.5155064930678672	3.0943106394370536	8.9317612111684497	2.5155064930678672	3.0943106394370536	 0 mM	10 mM	20 mM	218.77499999999998	282.08249999999964	262.64499999999998	Cadmium 	2.8122659161845358	5.2117863220460858	2.8122659161845358	5.2117863220460858	 0 mM	10 mM	20 mM	133.63	164.1225	142.04	
Fruit FW (g)

Control	0.38148154826500774	0.17117299728637103	0.18104978366920757	0.38148154826500774	0.17117299728637103	0.18104978366920757	 0 mM	10 mM	20 mM	6.9898000000000033	8.1113	7.4943499999999998	Cadmium 	0.27073478566055531	0.27097322130916768	0.27073478566055531	0.27097322130916768	 0 mM	10 mM	20 mM	4.6891499999999997	6.3485499999999995	5.2370999999999999	Menadione sodium bisulfite

Fruit DW (g)

Control	b
a
a
8.0433232615541139E-2	6.6454580890136533E-2	5.8928072513578206E-2	8.0433232615541139E-2	6.6454580890136533E-2	5.8928072513578206E-2	0 mM	10 mM	20 mM	96.621639679042488	97.248461884018667	97.194054464059676	Cadmium 	e
c
d
2.884173689150589E-2	3.1939421936438069E-2	3.8140942806808381E-2	2.884173689150589E-2	3.1939421936438069E-2	3.8140942806808381E-2	0 mM	10 mM	20 mM	95.663949805559071	96.361442138595109	96.110119103771382	Menadione sodium bisulfite
Fruit moisture content (%) 
Control	0.65622023742033708	0.59072695328157665	0.40824829046386302	0.65622023742033708	0.59072695328157665	0.40824829046386302	 0 mM	10 mM	20 mM	18.574999999999999	19.875	22	Cadmium 	0.32274861218395223	0.42695628191498508	0.82600948339995872	0.32274861218395223	0.42695628191498508	0.82600948339995872	 0 mM	10 mM	20 mM	12.75	14.875000000000028	16.875	
Root length (cm) 





