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Abstract 
 

This study presents a method for quantitatively estimating leaf area index (LAI) in winter wheat by exploring bi-directional 

reflectance distribution function (BRDF) data. In BRDF data, near-infrared reflectance (NIR) which is sensitive to crown 

component, canopy cover and crown shape, is affected by illuminated crown component, while red reflectance is sensitive to 

canopy gaps and controlled by illuminated ground component. Considering the effect of NIR/red ratio on the reflection of 

canopy and ground parameters, two new spectral vegetation indices, normalized difference ratio index (NDRI) and enhanced 

ratio vegetation index (ERVI), have been improved from normalized difference vegetation index (NDVI) and enhanced 

vegetation index (EVI). The efficacy of two new indices in estimation of LAI has been validated using the data sets from 

multi-angular observations. The results showed that: (a) the LAI estimation models by NDVI or EVI should be established 

separately for winter wheat with different canopy geometric structures; (b) the NDRI and ERVI at view zenith angle (VZA) of 

40° had the highest accuracy for estimating LAI in winter wheat with different crop geometric characteristics, comparison 

with other commonly used spectral vegetation indices (e.g. NDVI) or the values from other view angles; (c) the NIR/red ratio 

at VZA of 40°can represent canopy cover and crown shape in the canopy geometry. This study provides a novel method to 

estimate LAI for a variety of crops with different canopy geometric features using BRDF data in large scale, which can 

provide reference for developing multi-angle airborne or space-borne sensors in the future. © 2013 Friends Science Publishers 
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Introduction 
 

Leaf area index (LAI), defined as one half of the total 

foliage area per unit ground area, is a key biophysical 

variable influencing a variety of ecosystem processes, such 

as net photosynthesis, the interception of light and water, 

and carbon cycle is extensively used to drive ecosystem 

productivity models (Chen and Black, 1992; Fang and 

Liang, 2005; Maire et al., 2010; Gu et al., 2011). It provides 

information on crop yield and growth status (Baze-Gonzalez 

et al., 2005; Sridhar et al., 2008). Accurate and timely 

estimation of LAI at a large scale are essential for crop 

diagnosis and yield prediction. 

Nevertheless, inversion of LAI in plants by traditional 

methods is laborious and difficult to execute, especially on a 

regional scale (Gower et al., 1999). Conversely, remote 

sensing technology applications for assessing LAI at the 

regional scale have been explored extensively in recent 

decades. Currently, the methods for estimating LAI using 

remotely sensed data can be categorized in two types: (1) 

physically-based model inversion (Knyazikhin et al., 1998a; 

Fang et al., 2003; Houborg et al., 2009) and (2) statistical 
methods based on the relationship between LAI and 
vegetation indices (Chen and Cihlar, 1996; Turner et al., 

1999; Wang et al., 2007). Empirical models based on 

regression analysis can be conveniently established and are 

effective in estimation of LAI; therefore, statistical 
methods are more common. However, at-nadir, some 

problems also exist in this method, such as the relationship 

between LAI and spectral indices usually saturates as LAI 

exceeds 2.0, and the inversion accuracy of LAI is affected 

by the diversity of canopy structure (Pocewicz et al., 2007). 

In comparison with single view from vertical canopy, 

multi-angular observations can acquire more rich plant 

information by considering more canopy parameter. 

Consequently, this study attempts to invert LAI in winter 

wheat using BRDF data. 

Previous studies have shown the potential advantages 
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to detect forest canopy structural features and estimate LAI 

using BRDF data (Sandmeier et al., 1999; Gascon et al., 

2007). Knyazikhin et al. (1998a) developed an algorithm, 

based on a three-dimensional formulation of the radiative 

transfer process in vegetation canopies, to measure LAI 

from MODIS and MISR data. Durbha et al. (2007) 

proposed a methodology for LAI estimation by inverting 

PROSAIL model using support vector machines over 

multiangle imaging spectroradiometer (MISR) data. 

However, selection of the model parameters is not simple 

(Gu et al., 2011). After the introduction of the Hotspot-

Dark-spot index (HDS) and the discovery of the normalized 

difference between hotspot and dark spot (NDHD), 

calculating from multi-angle data, many studies have shown 

that there are strong correlation between foliage clumping 

index and both HDS and NDHD (Chen et al., 2005; 

Hasegawa et al., 2010; Pisek et al., 2011). Hasegawa et al. 

(2010) proposed that the normalized difference vegetation 

index (NDVI), when incorporating HDS, can provide better 

quantitative estimation of LAI than NDVI alone by 

accounting for foliage clumping. Hot spot is the peak in 

reflectance when the view zenith angle and the solar zenith 

angle coincide in the back-scattering region. In general, the 

observation geometry of these sensor, the difference of solar 

zenith angles at the time of the BRDF observations and 

canopy geometric structure of plant cause the BRDF data to 

capture incomplete data on the hotspot, where the apparent 

roughness is the largest (Maignan et al., 2004; Comar et al., 

2012). Therefore, many models were used to simulate or 

reproduce the directional signatures in order to obtain hot 

spot signature (Maignan et al., 2004; Yan et al., 2008). 

However, the physical BRDF model is complex, 

nonlinearity and therefore is still an under-determined 

problem (Yan et al., 2008; He et al., 2012). Consequently, it 

is necessary to develop a simple statistical method for 

measuring LAI from BRDF data.   

The goal of this study is to develop a simple but 

effective statistical method for assessment of LAI of winter 

wheat with contrasting canopy architectures using multi-

angle spectral measurements. To achieve such a goal, we 

took into account the changes in canopy geometry and 

biochemistry as time goes by incorporating vegetation 

indices at multiple view angles. 

 

Materials and Methods 
 

Study Area 

 

Our experiment was designed and conducted at Beijing 

Xiaotangshan Precision Agriculture Experimental Base 

from September 2006 to June 2007. The experimental site is 

located in Changping district, Beijing (4011 N, 11627 E) 

with a mean annual precipitation of 507.7 mm and a mean 

annual temperature of 13°C. The soil at the field site was 

classified as the silty clay loam with the nutrient content as 

follows: organic matter 14.2-14.8 g/kg, available potassium 

117.6-129.1 mg/kg, and available phosphorus 20.1-55.4 

mg/kg. 

In our experiment, a total of eight winter wheat 

varieties were investigated: three-erectophile varieties (Jing 

411, Laizhou 3279 and I-93); two-planophile varieties 

(Chaoyou 66 and Jingdong 8); and three-horizontal varieties 

(Linkang 2, 9428 and Zhouyou 9507). The effect of canopy 

architecture and LAI on canopy reflectance (%) was 

investigated in winter wheat with contrasting canopy 

architectures. Each variety was planted in a field size of 

45×10.8 m
2
 under the same treatments of sowing, 

fertilization and irrigation. A plot with an area of 1×1 m
2
, 

which could represent the average growth status for each 

wheat variety, was randomly selected and investigated.  
 

Field Measurement 
 

In situ canopy reflectance spectrum: An ASD FieldSpec 

Pro spectrometer (Analytical Spectral Devices, Boulder, CO, 

USA), fitted with a 25°-field-of-view fiber optic adaptor and 

operated in the 350-2500 nm spectral range, was used to 

measure canopy reflectance under clear sky conditions 

between 10:00 a.m. and 14:00 p.m. (Beijing local time). All 

canopy reflectance was collected at a height of 1.3 m above 

ground, and a 40×40 cm
2 
BaSO4 calibration panel was used 

to calibrate the reflectance. For each sample plot, twenty 

scans were performed within the same 1×1 m
2 
plot to record 

the irradiance measurements and the average was calculated 

as the final value.  

Canopy BRDF reflectance spectrum: To obtain the 

information of plants from various angles, the same 

spectrum instrument was employed just as was used in situ 

canopy spectral measurements to obtain canopy bi-

directional reflectance (BRDF) at the principle plane and the 

cross-principle solar plane. In our study, in accordance with 

the measuring method introduced by Huang et al. (2006), a 

rotating bracket was used to fix the spectrum instrument to 

collect multi-angular spectral data. The view zenith angle 

was arranged from -60° to 60° with an interval of 10°, 

where positive angle corresponds to back-to-the-sun, and 

negative angle corresponds to facing-the-sun. 

LAI Measurements: After the spectral measurements were 

finished, the wheat plants in the plot (0.3 m
2
) were collected, 

and placed in cooled black plastic bags and transported to 

the laboratory. In the laboratory, the Li-Cor 3100 Area 

Meter was used to measure the leaf area of a subsample 

(LAsub) of plant leaves and the weight of leaves was then 

obtained when the leaves were dried at 105° for 10 min and 

then at 65° for 5 h. Afterwards, the LAI of 0.3 m
2
 sample 

area could be calculated as follows: 
 

 
total leaves weight

sample area
subsample leaves weight

subLAI LA
 

   
 

    (1) 

 

Methods 
 

Many studies have focused on the relationship between LAI 
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and vegetation indices such as NDVI and enhanced 

vegetation index (EVI) (Curran, 1992; Gutiérren-Rodríguen 

et al., 2006; Fan et al., 2009). However, Malet (1996) 

reported that vegetation indices derived from remote sensing 

or ground data (at nadir) are usually insufficient to estimate 

LAI unless canopy architecture is known. Increase in gap 

size results in a higher red reflectance, but near-infrared 

reflectance (NIR) shows the increasing trend with 

decreasing gap size, which is opposite to crown cover 

(Gerard et al., 1997). Therefore, some other ancillary 

parameters could be considered and we attempted to use the 

NIR/red ratio at each view angle to represent the canopy 

cover and canopy gap. Sellers et al. (1992) also 

confirmed a strong mechanistic basis for the correlation 

relationship between simple infrared/red ratio and 

Fraction of absorbed Photosynthetically Active Radiation 

(FPAR), which portrayed vegetation canopy function and 

absorption capacity (Sellers et al., 1992; Peng et al., 2012). 

Huang et al. (2006) also used the canopy reflectance of 800 

nm at the erecting and elongation stage to distinguish the 

canopy geometric structure, which allowed the near-infrared 

reflectance to be represented by the reflectance of 800 nm 

(Huang et al., 2006). At the same time, the chlorophyll 

absorption feature near 680 nm was used to discriminate the 

green vegetation and non-green vegetation (Datt, 2000), so 

the reflectance of 680 nm was used to represent the red 

reflectance. Therefore, 800 680/R R  at each view angle was 

used to represent the canopy cover and canopy gap. 

Based on the above theoretical considerations, two 

new spectral vegetation indices, normalized difference 

ratio index (NDRI) and enhanced ratio vegetation index 

ratio index (ERVI), are further improved from regular 

NDVI and EVI by incorporating the effect of NIR/red ratio 

on the reflection of canopy and ground parameters. The 

vegetation indices (NDVI, EVI, NDRI and ERVI) were 

calculated as follow (Huete et al., 1997; Goward et al., 

1985): 

NDVI= ) /( )nir red nir redR R R R （
            

(2) 

EVI=2.5 ) / ( 6 7.5 1)nir red nir red blueR R R R R      （
(3)

 

800 680( ) ( )( )NDRI i NDVI R R i 
                                 

(4) 

800 680( ) ( )( )ERVI i EVI R R i 
                                 

(5) 

Where, nirR , redR  and blueR  are the spectral 

reflectance in the near-infrared (800 nm), red (680 nm), and 

blue (443 nm) bands, respectively. And i is the view angle. 

NDVI and EVI are derived from nadir-viewing canopy 

reflectance. 

 

Results 
 

Relationship between LAI and Vegetation Indices 

(NDVI and EVI) 

 

 As shown in Table 1, under the different approximate LAI 

values, the  average canopy reflectance in the near-infrared 

band (800 nm and 1100 nm) and EVI value of horizontal 

varieties are significantly (P≤0.05) greater than that of 

erectophile varieties. This confirms that the canopy 

reflectance is influenced by both LAI and canopy 

architecture. Using the same regression equation (LAI-EVI), 

the LAI values of the erectophile varieties were 

underestimated and overestimated for horizontal varieties as 

LAI greater than intermediate value, which is opposite when 

LAI lower than intermediate value (Fig. 1b). By contrast, it 

can be seen that the relationship between LAI and NDVI 

usually saturates when LAI exceeds 2.0 and the trend lines 

(LAI-NDVI) of the two kinds of canopy structures were 

different (Fig. 1a). Therefore, Fig. 1 illustrates that the 

different relationships (at nadir) between LAI and both 

NDVI and EVI in winter wheat can be attributed to the 

differences between erectophile and horizontal varieties. It 

can also be concluded that it is difficult to measure LAI 

using the relationship between LAI and NDVI when LAI 

exceeds 2.0.  

 

Relationship between LAI, NDRI and ERVI 
 

Considering different geometric structures of the wheat 

canopy, the relationship between LAI and NDRI and ERVI 

at each view angle can be seen in Fig. 2. Each of these 

figures includes three trend lines between LAI and NDRI or 

ERVI for winter wheat of different canopy structures at the 

corresponding angle. To accurately invert LAI of winter 

wheat, it is required to find a solution for allowing the trend 

lines between LAI and both NDRI and ERVI to as close to 

Table 1: The average spectral reflectance and EVI value for different canopy structures under different LAI. (LSD: least 

significant differences (P≤0.05) for the erectophile varieties vs. horizontal varieties) 
 

Mean LAI Crop geometry LAI 443 nm 560 nm 680 nm 800 nm 1100 nm EVI 

LAI≈1.60 Erectophile 1.54 1.94 4.74 3.25 33.46 36.46 0.55 

 Horizontal 1.68 2.12 5.20 2.77 37.89 40.51 0.63 

 LSD 0.39 0.54 0.89 1.08 1.91 3.26 0.04 

LAI≈3.45 Erectophile 3.47 1.90 4.35 1.96 44.57 44.45 0.75 

 Horizontal 3.44 1.77 4.43 1.76 48.83 47.56 0.80 

 LSD 0.44 0.97 1.66 0.91 1.18 1.68 0.01 

LAI≈4.85 Erectophile 5.00 1.60 3.74 1.47 47.60 45.44 0.8 

 Horizontal 4.68 2.41 5.93 2.25 58.61 56.04 0.92 

 LSD 0.96 0.25 0.59 0.43 5.01 5.82 0.06 
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be 1:1 as possible for different canopy structures. As can 

be seen, it can be concluded that 40° was the optimal angle 

(Fig. 2). At such an angle, trend lines (LAI-NDRI and 

LAI-ERVI) of the three kinds of canopy structures were 

the closest, as compared to other view angles. The 

coefficients of determination (R
2
) were 0.76, 0.95 and 0.83 

for LAI-NDRI and 0.86, 0.86, and 0.86 for LAI-ERVI, 

respectively, which showed a significant correlation. It can 

be concluded that the NIR/red ratio at VZA of 40°can 

better represent canopy cover and crown shape in the 

canopy geometry. 

 

Comparison between NDVI/NDRI(40)/EVI/ERVI(40) 

and LAI 
 

The relationship between NDVI and LAI shows the 

approximation of the exponential function and NDVI 

cannot effectively distinguish LAI (>2.0) (Fig. 3a). By 

contrast, it was revealed that NDRI (40) and LAI are 

linearly related, with an R
2
 of 0.82 and a root mean square 

error (RMSE) of 0.51, which clear indicates that NDRI (40) 

greatly reduces the saturation problem (Fig. 3b). In 

comparison with EVI, ERVI (40) not only has the stronger 

correlation with LAI (R
2
 = 0.86) but also has the smaller 

RMSE of 0.45 (Fig. 4).  
 

Discussion 

 
Multi-angle spectral data is capable of providing rich 

spectral and angular information for extracting the 

structure parameters and inverting LAI (Knyazikhin et al., 

1998b; Kimes et al., 2006; Hasegawa et al., 2010). This 

study indicated that estimation of LAI could be accurately 

performed when considering the effect of canopy 

geometry characteristics from measured BRDF data. The 

vegetation indices NDRI (40) and ERVI (40) calculated 

from BRDF data were more effective to estimate LAI 

compared with commonly used spectral vegetation 
indices (e.g., NDVI), which was extremely significant for 

crop diagnosis and yield prediction. But the result could 

 

 

 
 

Fig. 1: Relationship between LAI and NDVI (a), EVI (b) 

of winter wheat considering different canopy geometric 

structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Fig. 2: Relationship between LAI and NRVI and ERVI at 

each view angle in winter wheat for different canopy 

structures. Where, ◇,﹡ and △ represent the data points of 

erectophile, planophile and horizontal varieties, 

respectively 



 

Estimation of Leaf Area Index Using Multi-angle Spectrum / Int. J. Agric. Biol., Vol. 15, No. 6, 2013 

 1191 

not be directly used for other plants. Specifically, the 

influence of the solar zenith angle (SZA) was not studied in 

our study, so it was difficult to judge whether the optimal 

angle was affected by SZA. In following studies, more 

experiments and analysis will be required to validate the 

results and evaluate how this method can be used for multi-

angle satellite sensors (e.g., CHRIS) at regional scales 

(Vuolo et al., 2008). 

  In comparison with single view from vertical canopy, 

multi-angular observations acquired more plant information 

by considering more canopy parameters. In general, an 

optimal view angle or combination of different angles exited 

in retrieving various plant parameters. However, for most of 

current optical sensors, the spectral or image information is 

always acquired in vertical canopy direction. It can be 

predicted that more multi-angular satellite sensors will be 

launched to satisfy the needs for plant parameters in the near 

future. This study provide a case study to find out the best 

angle to estimate LAI in winter wheat, which can lay a 

foundation for designing satellite with multi-angle sensors 

for quantitative crop monitoring. 

In conclusion, this study initially confirmed that the 

relationship between LAI and NDVI or EVI should be 

established separately for winter wheat cultivars with 

different canopy geometric structures. The NIR/red ratio at 

each view angle was then introduced to represent the 

canopy cover and canopy gap. Based on this theoretical 

consideration, two new spectral vegetation indices, 

normalized difference ratio index (NDRI) and enhanced 

ratio vegetation index (ERVI), are further improved from 

commonly used NDVI and EVI by incorporating the effect 

of NIR/red ratio on the reflection of canopy and ground 

parameters. The results showed that 40° is the perfect angle 

and both NDRI (40) and ERVI (40) are linearly related to 

LAI, which seems to greatly reduce the saturation problem. 

The acquired multi-angular spectral and LAI data sets 

derived from Beijing Xiaotangshan Precision Agriculture 

Experimental Base have confirmed the efficacy of two new 

indices. Moreover, NDRI (40) and ERVI (40) calculated 

from BRDF data are superior to NDVI and EVI for 

estimation of LAI in winter wheat. We conclude that it will 

be more accurate to estimate LAI by BRDF data than 

vertical canopy observations, when considering the canopy 

geometry effect.  
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