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ABSTRACT 
 
The developed algorithm was used for the real time specific weed discrimination employing multi-level wavelet 
decomposition. This algorithm used four different types of wavelets i.e., Daubechies (bd4), Symlets (sym4), Biorthogonal 
(bior3.3) and Reverse Biorthogonal (rbio3.3) up to four levels of decomposition to classify images into broad and narrow class 
for real-time selective herbicide application using the Euclidian distance method. The lab, which have shown that the system 
to be very effective in weed identification, segmentation and discrimination. The test and analysis show that 97.26% 
classification accuracy over 350 sample images (broad & narrow) with 175 samples from each category of weeds and the 
proposed algorithm takes 29 ms as average time for the classification of the specific weeds. 
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INTRODUCTION 
 

Weed control is a critical farm operation and can 
significantly affect crop yield. Herbicides have vital 
importance in weed control and high crop yield however 
these have potential to produce harmful effects (Sunil, 
2007). Herbicide are normally applied uniformly, because 
of which weeds are highly aggregated and tend to occur in 
clumps and or patches and also remain relatively stable in 
size and location year by year (Wilson & Brain. 1991; 
Stafford & Miller, 1993). Sunil (2007) reported that manual 
scouting for patch spraying consumed considerable 
resources and was not a feasible option for most farm 
operations. It had also been suggested that patch spraying 
considerably reduced herbicide use. Furthermore, on 
comparison with uniform application method the reduction 
of herbicide not only gives economic advantage but also it is 
friendly to environment. 

The amount of herbicides in a control patch sprayer 
has been potentially reduced when real-time weed sensing is 
used. Patch spraying using remote sensing and machine 
vision are successful systems. Both the systems essentially 
require image acquisition and image processing (Tang et al., 
1999). Lee (1999) and Søgaard and Olsen (2003) have 
reported that image size ranged in the order of megabytes 
took 0.34s to 7 sec for its processing depending on image 
resolution, crop and weed type, algorithm used and 
hardware configurations. Further remote sensing can be 
employed on plot basis, while machine vision systems are 

more suitable on plant scale herbicide application. 
Machine vision based weed sensing showed promise, 

because it not only it utilizes spectral information, but 
spatial and textural information as well (Tang et al., 1999). 
Worked on selective sprayers with real-time weed sensing 
showed limited potential mainly, because of the difficulties 
in distinguishing weeds from crops (Stafford & Miller, 
1993; Paice, 1995). Johnson (1997) compared two 
techniques of real-time weed sensing, one using photo 
detectors and the other using machine vision has been 
conducted. Photo detector weed sensing did not reach high-
resolution levels, whereas machine vision could easily be set 
at a high resolution and larger sensing area was covered for 
spatial analysis. 

Weeds could be separated from the crops by using 
color and geometric information (Tang et al., 1999). The 
machine vision based approach uses shape, texture, color 
and location based features individually or jointly to 
discriminate between weed and crop but varied results were 
obtained for these features and their combinations (Åstrand, 
2005). An imaging sensor is a key component of almost any 
weed detection and classification system and methods of 
using them are various but individual plant classification 
demonstrated success with either spectral (Vrindts, 2002) or 
color imaging (Hemming, 2003). However, the spatial 
resolutions of spectral systems are typically not accurate for 
individual plant or leaf detection. Thus, color-imaging 
methods with higher spatial resolution do not impart 
significant additional information (Pauli, 2007). 
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One challenge in outdoor machine vision weed 
sensing is to overcome variable lighting conditions when 
using conventional CCD cameras and much research on 
machine vision weed sensing had been done on the 
controlled lighting conditions but a little attention has been 
paid to the issue of real-time operations (Woebbecke, 
2005a). Tang et al. (1999) studied color indices in the image 
for weed segmentation with shaded and un-shaded plant 
surfaces and found that the best segmentation occurred with 
the modified hue and excessive green contrast index. 
However, leaf “hole” pixels were created due to converting 
images from 24-bit to 8-bit color representation. Further 
vegetation image segmentation methods were based on a 
clustering analysis model 9-10 with adapting to the lighting 
variation, which supervised color image segmentation using 
binary coded genetic algorithm identifying a region in hue-
saturation-intensity color space for outdoor field real-time 
weed sensing and implemented to create a segmentation 
look-up table. 

A high-resolution weed map is necessary for weed 
infestation map-based patch spraying (Tang et al., 1999). 
Machine vision-based automated high-resolution weed 
mapping shows advantages over conventional manual weed 
counting and statistical model-based weed mapping (Tang 
et al., 1999). Manual counting is labor intensive, resulting in 
low sampling resolutions and impracticality in covering 
large field areas. To overcome these limitations, a system 
was integrated into this real-time patch sprayer to generate 
high-resolution weed maps from geo-referenced video 
images or directly from the data recorded at real-time 
operation (Tang et al., 1999). This map was useful for the 
next season pre-emergence herbicide application when no 
weeds were present. Meanwhile, this high-resolution weed 
mapping system can be used for other weed control guided 
applications. Machine vision systems are also widely used 
for inspection of growing plants to recognize their diseases 
using trichromatic features of leaves (Boleslaw, 2005). With 
its goal to sort data into some groups according to the given 
parameters i.e., to solve segmentation problem. 

One approach for segmenting agricultural landed-
fields in digital aerial images is using a generalization of 
region growing techniques combined with deformable 
models (Margarita & Petia, 2000). This mixed approach is 
called Region Competition. The goal of this approach is to 
alleviate the tasks of digitizing the region contours to obtain 
the vector representation of the features that appear in an 
aerial photo. Region competition combines the best features 
of Snakes/Balloon models and Region Growing techniques. 
While in operation, time these techniques are applied to the 
case of having only two regions: the parcel to be segmented 
and its complementary (Doudkin et al., 2007). 

An example of an application that involves a 
segmentation technique is spraying the roadside plant 
material with herbicide to prevent the weeds from becoming 
a fire hazard in summer season. The first step in identifying 
weeds within an image involves classifying the pixels by 

using a point operation in such a way that surrounding 
pixels will not bias a pixel’s classification (Chris, 2003). 
Further the purpose of segmenting the image into plant and 
background pixels is to detect the amount of plant material 
within a specific area. Moreover, if the amount of plant 
material reaches a specific threshold, then the area is 
targeted for herbicidal spay application (Chris, 2003). The 
spray threshold is limited by the fraction of background 
pixels that are misclassified as plant material. If the spray 
threshold is set too close to the background misclassification 
rate, then herbicide will be wasted spraying background. 
Therefore, a larger misclassification rate limits the smallest 
plant that can be detected without targeting the background 
for spray (Chris, 2003). 

The real-time operation on machine vision weed 
sensing, herbicides delivery system that can perform patch-
spraying for post-emergence herbicide application in real-
time and creates a weed map to handle pre-emergence 
herbicide application for the following season. This system 
enabled distribution of chemical more effectively and 
resulted in lower environmental loading with increased 
profitability for procedure (Tang et al., 1999). The system 
could make use of the spatial distribution information in 
real-time with necessary amounts of herbicide applied to the 
weed-infested area would be much more efficiently owing 
to minimal environmental damage. Thus, a high spatial 
resolution, real-time weed infestation detection system 
seems to be the solution for site-specific weed management. 

Many researchers have developed different vision 
systems to highlight weed plants in crops and to map the 
weeds in real-time for site-specific spraying of infested 
areas (Felton & McCloy, 1992: Blasco et al., 2002; 
Slaughter et al., 2007). These systems were based on optical 
sensors (photodiodes) and used for the 
classification/discrimination between plants (narrow plants 
& broad plants) from their reflection spectra. Among the 
best-known systems are the Weed Seeker and Spray Vision 
(Felton & McCloy, 1992). The limitations of these systems 
are that they cannot discriminate between crop and weeds. 
More recently (Åstrand & Baerveldt, 2002 & 2005) have 
developed a robot with two vision systems guided by crop 
rows, which aimed at mechanical removal of inter-row 
weeds. The drawback of this detection method was that it 
suited to crops sown by drilling methods such as salad or 
sugar beet (Bossu et al., 2009). An off-line approach has 
also been investigated, where data were acquired in one pass 
and analyzed at the office. In a second pass, the weed 
mapping was used to control an agricultural engine in the 
crop field. For example Meyer et al. (1998) developed a 
multi-spectral imaging system embedded in a small aircraft, 
which over-flew a sunflower field crop. This discriminated 
between crop and inter-row weeds with spatial image 
processing based on Gabor filtering, which detected crop 
rows by their frequency. However, weeds within the crop 
row were not recognized. 

Certain accurate methods for weed detection have 
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been developed, which included wavelet transformation to 
discriminate between crop and weed in perspective 
agronomic images (Manh et al., 2001) and spectral 
reflectance of plants with artificial neural networks 
(Fontaine & Crowe, 2006). Other researchers have 
investigated texture features (Meyer et al., 1998) or 
biological morphology such as leaf shape recognition 
(Manh et al., 2001). So in real time for the identification and 
classification of crop rows in images, a lot of fast methods 
have been implemented (Moshou et al., 2001); some of 
them are based on Hough transform (Leemans & Destain, 
2006), Fourier transform (Vioix et al., 2002), Kalman 
filtering (Hague & Tillet, 2001) and linear regression 
(Søgaard & Olsen, 2003). The Hough transform is usually 
implemented for automatic guidance in crop fields 
(Marchant, 1996; Keicher, 2000). Consequently, there are 
various vision systems available on autonomous weed 
control robots for mechanical weed removal. 

The objective of this research was to develop a vision 
algorithm. It was not an autonomous robot but a real-time 
machine vision system, which can recognize the absence of 
weed and differentiate the presence of broad leaf weed and 
narrow leaf weed and also to construct and evaluate a 
classifier that was capable of recognizing the presence and 
type of weeds and then the appropriate herbicides could be 
applied using the automatic sprayer control system based on 
the proposed algorithm (multilevel wavelet decomposition). 
The algorithm contained four different types of wavelets: 
Daubechies (bd4), Symlets (sym4), Biorthogonal (bior3.3) 
and Reverse Biorthogonal (rbio3.3). In this work, the 
automatic sprayer control system was used, which included 
CCD camera, central processing unit (CPU), decision box 
and two dc pumps for spraying (Fig. 1). The images were 
taken at a distance of 4 m and at an angle of 45 degrees with 
the horizontal in a selected agricultural field. 
 
MATERIALS AND METHODS 
 
General experimental details. By using a multilevel 
wavelet decomposition a set of coefficients from each level 
of decomposition was extracted, which were used to classify 
the broad and narrow leaf weeds. There are three stages in 
the proposed algorithm: preprocessing, feature extraction 
and classification process. The preprocessing stage was 
necessary to improve the quality of images and made the 
feature extraction phase more reliable for the enhancement 
of broad and narrow leaf weeds image pruning. For this 
purpose, histogram equalization techniques were adopted 
for the removal of background information and un-
necessary and hidden details for fast and easy processing, 
while the histogram equalization stage dealt with enhancing 
the contrast of suspicious areas in the image. The database 
of broad and narrow leaf images were used to recognized 
and classify the plants. 
Image preprocessing. The database of the images having 
revolution 240 pixel rows and 320 pixel columns and almost 

50% of the whole images compressed of the background 
with a lot of noise. In this stage a cropping operation was 
applied to the image to remove the un-wanted and hidden 
details of the image and hence diminished the noise. 
Wavelet decomposition. This algorithm dealt with 
monochromatic images i.e., gray scale images. An integer 
value communicated with each pixel of the image, as an 
index in an ordered table of colors, contained a matrix of 
integers. True color images often interacted with three 
matrices, for RGB coding. The wavelet decomposition 
could be interpreted as signal decomposition in a set of 
independent, spatially oriented frequency channels. Each 
vector consisted of sub-vectors like:  
 

 
 

Fig. 4 shows that how a 2D image is decomposed. For 
example, we have an image x of 2D and the values are to be 
affected to the coordinates in . The 2D image x breaks 
up into a sum of orthogonal sub images corresponding to 
different visualization, so the following equation is 
generated. 
 

 
 

Decomposition along three directions of detail spaces 
implies that in 2D:  
 

 
 

Where ,  and  are known as horizontal, 
vertical and diagonal details. 

In this study, four different levels of decomposition 
based on four different wavelet functions, namely 
Daubechies (bd4), Symlets (sym4), Biorthogonal (bior3.3) 
and Reverse Biorthogonal (rbio3.3) wavelet functions were 
used. In each level of decomposition the biggest 100 
coefficients were used to represent the corresponding 
feature vector. In the proposed algorithm the image 
preprocessing (Image Pruning) was applied for the purpose 
of removing the un-necessary information from the image. 
Then the wavelet transformation was applied using db4, 
sym4, bior3.3 and rbio3.3 wavelets. For the feature 
extraction 100 highest and average coefficients from each 
level of decomposition (4 x 100 values) were determined. 
The Euclidian distance was used to design the classifier in 
which for each class the class core vector was the mean of 
25% of the class vectors. Thus for the classification of 
proposed algorithm uses the Euclidian distance method 
(Fig. 2). 
Feature extraction. Using the wavelet decomposition the 
images were enhanced and the features were extracted from 
those coefficients, which were produced during the process 
of the wavelet decomposition; thereby, making the 
classification of the specific weeds possible. The feature 
vectors (highest coefficients) that were extracted from the 
original images stored in the database and used to test the 
proposed algorithm. Euclidian distance method was used to 
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design a classifier in order to recognize and differentiate 
between broad and narrow specific weeds for the real time 
automatic sprayer control system. For each class the core 
vector was the mean of 25% of the class vectors (Eq. 1). For 
a new feature vector the distance between feature vector and 
the class core vector is calculated using Equation 2. The 
system automatically classified the feature vector in the 
class for which the distance was smallest. 

 
 

Where  is the coefficient vector for each training 
image, j is the index of vector; N is the number of the image 
in the class used for training, Dist is the calculated distance 
between the tested image and every core vector and k is the 
length of vectors.  Is the feature vector of the weeds to 
be classified and  is the vector core of each class. The 
weed images that were used in testing the effectiveness of 
the proposed system were decomposed into four levels of 
using sym4, db4, bior3.3, and rbio3.3. Table I, II, III and IV 
shows the distribution of used specific weed images over 
different classes. In every experiment a class core vector 
was calculated for each class using Equation 1 and then the 
feature vector (highest coefficients) was extracted from the 
database of specific weed images, which were employed in 
the testing phase including those used to produce the class 
core vector. Equation 2 is used to measure the distance 
between the coefficient vector and each class core vectors. 
 
RESULTS AND DISCUSSION 
 

Multilevel wavelet decomposition is a technique used 
in medical imaging. Bossu et al. (2009) proposed a 
complete approach for crop/weed discrimination based on 
wavelet transforms consisted of Daubechies, Mayer and 
Biorthogonal and compared it to a Gabor filtering. Among 
those the Daubechies and Mayer gave the best results 
(84.6% & 84.1%) and the Biorthogonal is the worst one, 
which gave the result 76.4% and Gabor filter gave the result 
73.7%. So in this paper the proposed algorithm classified 
real-time specific weed discrimination based on wavelet 
transform consisted of Symlets, Daubechies, Biorthogonal 
and Reverse Biorthogonal and then to compared it with 
Bossu et al. (2009), so among those the Biorthogonal gave 
the best result (97.64%). This algorithm enabled to 
distinguish between broad and narrow according to their 
properties and then to classify them. By using this algorithm 
the right type of herbicides can be applied on the real time 
specific weeds. To build the class core vectors, 50 images 
are used for each class. The proposed algorithm uses the 4 
different types of wavelets i.e., Daubechies (db4), Symlet 
(sym4), Biorthogonal (bior3.3) and Reverse Biorthogonal 
(rbio3.3). These wavelets are used in the decomposition 
process and four levels of decomposition are applied for the 
proposed algorithm. 

From Table I and Fig. 5 the average accuracy of 
classification using Symlets (sym4) wavelet is 98.31% and 
the elapsed time for classification is 47.5 ms, from Table II 
and Fig. 6 the average accuracy of classification using 
Daubechies (db4) wavelet is 95.78% and the elapsed time is 

, i = 1, 2, 3……, k              (1) 

(2)

Fig. 1. Automatic Sprayer Control System 
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Fig. 2. Euclidian distance method used for the 
classification of the specific weeds 
 

 
 

 

 

 

 

 
 

 
 

 
 

   

 

 

 
 

 

 

 
 

 
Fig. 3. Original Image- size = 320 x 240 
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24 ms, from Table III and Fig. 7 the average accuracy of 
classification using Biorthogonal (bior3.3) wavelet is 
97.64% and the elapsed time for classification is 24 ms and 
from Table IV and Fig. 8 the average accuracy of 
classification using Reverse Biorthogonal (rbio3.3) wavelet 
is 96.79% and the elapsed time for classification is 21 ms. 

Fig. 10 and 11 show the classification of broad and 
narrow weeds using different types of wavelets at different 
levels of decompositions. The proposed algorithm 
(Multilevel Wavelet Decomposition) is developed, which 
shows the original image, processed image and the results of 
the proposed algorithm. The images were taken at a 4 m 
long and at an angle 45o with the horizontal, which gave a 
reliable accuracy to detect the presence or absence of weed 
cover. For areas, where weeds were detected, results show 
over 97.26% classification accuracy over 350 sample 
images within which 175 samples from broad category and 
175 samples from narrow category (Table I, II, III & IV). 

It is obvious form the Table V and Fig. 9 that the 
classification through Symlets (sym4) wavelet is more 
efficient, due to least error (1.69%) and highest accuracy 
98.31%, but it took more time for classification (47 ms) and 
the classification through bior3.3 wavelet is the most 
efficient as it took half of the time (24 ms) as of the sym4. 
The accuracy of classification through db4 (95.78%) and 
rboi3.3 (96.79%) are comparable to sym4 and bior3.3 and 
took less elapse time for classification (24 ms & 21 ms, 
respectively) but higher in term of error (4.22% & 3.21%, 
respectively). 

The db4 wavelet, which is used by Ferreira and 
Borges (2003) for the purpose of mammogram classification 
using a multilevel wavelet transform, sym4 and rbior3.3 
may not be used for the classification of the specific weed in 
term of error and elapse time. The results indicate that 

Table I. Classification by using Symlet (sym4) wavelet 
 
Levels Accuracy of Classification (% ) Elapse Time (ms) Error (%)
1 98.85 61 1.15 
2 98.25 15 1.75 
3 97.14 17 2.86 
4 99.00 97 1.00 
 
Table II. Classification by using Daubechies (db4) 
 
Levels Accuracy of Classification (% ) Elapse Time (ms) Error (%)
1 99.00 25 1.00 
2 97.71 17 2.29 
3 99.00 31 1.00 
4 94.86 23 5.14 
 
Table III. Classification by using Biorthogonal 
(bior3.3) 
 
Levels Accuracy of Classification (%) Elapse Time (ms) Error (%) 
1 99.00 25 1.00 
2 97.71 17 2.29 
3 99.00 31 1.00 
4 94.86 23 5.14 
 
Table IV. Classification by using Reverse Biorthogonal 
(rbio3.3) Wavelet 
 
Levels Accuracy of Classification (% ) Elapse Time (ms) Error (%)
1 92.57 24 7.43 
2 96.57 26 3.83 
3 99.00 17 1.00 
4 99.00 19 1.00 
 
Table V. Comparison of different wavelets 
classification 
 
Wavelets Accuracy of Classification (% ) Elapse Time (ms) Error (%)
Sym4 98.31 47 1.69 
Db4 95.78 24 4.22 
Bior3.3 97.64 24 2.36 
Rbio3.3 96.79 21 3.21 

Fig. 4. Broad weed decomposition at level 1 (top), level 
2 (middle) and at level 3 (bottom), the two graphs on 
the right shows the organization of the coefficients 
 

 
 
Fig. 5. Classification using sym4 wavelet 
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bior3.3 is a promising wavelet due to it high accuracy, less 
error and less elapse time as compared to the rest of the 
wavelets tested. This finding is significant when 
determining the suitable wavelet to be used in real-time 
specific weed discrimination system (Fig. 1). 
 
CONCLUSION 
 

In this study, we proposed a complete approach for 

real-time specific weed discrimination from image 
processing using multilevel wavelet decomposition. The 
developed algorithm was successfully tested in the lab for 
weed detection/classification in order for selective spraying 
of herbicide using vision recognition system. It used four 
different types of wavelets, namely Symlets (sym4), 
Daubechies (db4), Biorthogonal (bior3.3) and Reverse 
Biorthogonal (rbio3.3). The accuracy of discrimination for 
sym4 is higher and produced less error but it took more 

Fig. 6. Classification using db4 wavelet 
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Fig. 7. Classification using bio3.3 wavelet 
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Fig. 8. Classification using rbio3.3 wavelet 
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Fig. 9. Comparison of different wavelets classification 
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Fig. 11. Narrow Weeds decomposition using sym4 
wavelet 
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elapsed time. Db4 and rbio3.3 wavelets produced higher 
accuracy and less elapse time but the highest in terms of 
error. The algorithm shows an effective and reliable 
classification of images using Biorthogonal (bior3.3) 
wavelet. The environmental parameters greatly affect the 
performance of currently developed weed classifier. 
Lighting conditions, wind and other natural environment 
parameters degrade the performance of algorithm. Further 
research is needed to perform environmental adaptive weed 
recognition and classification to develop such classifier, 
which will detect natural environment parameters and 
classify weed images according to these parameters to 
enhance the result of weed classifiers. 
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