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Abstract 
 

Changes of key parameters of vegetation are essential indicators of ecosystem and global change. Hyperspectral data, as a 

powerful tool to estimate vegetation parameters, needs to be used more efficiently and effectively, especially in the aspect of 

massive information extraction. The objectives of the present study were to provide guidance on how to select the optimal 

subset of hyperspectral data to improve the accuracy of estimating vegetation cover using hyperspectral data measured in the 

field, and to compare the predictive ability of several estimation models. Based on the field-measured hyperspectral curves for 

completely covered land, bare soil, and the vegetation canopy, we used vegetation cover data obtained by analyzing digital 

camera photos and different vegetation indices to calculate the accuracy of estimation of vegetation cover by the different 

models and we discuss differences among the models. We found the most accurate estimate of vegetation cover in our study 

area using a single optimal combination of wavelengths based on MSAVI2 indices and the semi-empirical model proposed by 

Gutman and Ignatov. © 2013 Friends Science Publishers 
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Introduction 
 

Vegetation is an important indicator in global change 

research because it is the main component of most 

ecosystems and represents a natural link among soil, 

atmosphere, and water. Vegetation plays an essential role in 

biogeochemical and hydrological cycles, as well as in 

energy exchange at the Earth's surface (Li et al., 2003). 

Vegetation cover is a key parameter that represents the 

amount of vegetation and its growing conditions (Chaichi et 

al., 2005; Jiang et al., 2006). Studies of vegetation cover can 

provide information about land cover change and about the 

vegetation's ability to maintain the global carbon balance, 

control CO2 emissions, and stabilize the global environment 

against climate change (Wang et al., 2008; Louhaichi et al., 

2010). 

Remote sensing is an important tool for estimating 

vegetation cover. The spectral signal of vegetation is 

characterized by a low reflectance value in the red band, a 

sudden increase in the 700- to 740 nm band, and a high 

value in the green band (Collins, 1978; Horler et al., 1983a 

and b). There are three main methods to monitor vegetation 

cover: empirical or semi-empirical models, vegetation 

indices and sub-pixel decomposition (Graetz, 

1988; Dymond et al., 1992; Shoshany et al., 1996; Gutman 

and Ignatov, 1998). The empirical models have been widely 

used for a long time due to their convenience and ease of 

use. The most widely used index has been the 

normalized-difference vegetation index (NDVI) (; Tucker, 

1979; Huete and Liu, 1994; Ustin et al., 2004; Jiang et al., 

2006), combining various models like dense-vegetation 

mosaic-pixel model established by Gutman and Ignatov 

(1998), the genetic semi-empirical relationship between 

vertical gap fraction and vegetation index (Baret et al., 

1995), and the semi-empirical relationship proposed by 

Carlson and Ripley (1997). 

Data sets from remote-sensing platforms and sensors 

are widely used for the analysis of vegetation conditions and 

provide significant information about vast areas, thereby 

permitting an overview of land cover at regional scales. 

However, these systems have limited accuracy because of 

their coarse spectral resolution (Roberts et al., 1993; van 

Leeuwen and Huete, 1996; Numata et al., 2008). The 

development of hyperspectral sensors has provided 

continuous data across a large number of spectral bands. 

This detailed information improves the accuracy of 

monitoring, quantifying, and estimating vegetation chemical 

and physical properties (Kokaly and Clark, 1999; Curran et 

al., 2001; Pu et al., 2003; Mutanga et al., 2004). At the same 

time, hyperspectral data provide more opportunities to 
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estimate vegetation factional coverage based on 

semi-empirical models derived from vegetation indices 

(Rouse et al., 1973; Richardson and Wiegand, 1977). These 

methods of band selection regard hyperspectral data as just 

another type of broadband data, and therefore fail to take 

advantage of the full potential offered by the high resolution 

of hyperspectral data. 

The objective of this paper was to explore the 

performance of different band-selection methods used to 

calculate vegetation indices and vegetation cover based on 

three semi-empirical models. We estimated the vegetation 

cover using coverage data obtained with a digital camera, 

and then compared this with the results produced by three 

models and four vegetation indices. Our study was done at a 

community scale, and all the hyperspectral data was 

obtained from field measurements using a portable 

spectroradiometer. 

 

Materials and Methods 
 

Experimental Design 

 

We conducted our experiment in a meadow steppe 

environment in Ewenke County of Hulunbeier Banner of 

China's Inner Mongolia autonomous region (Fig. 1). The 

study area is flat, with a relatively homogeneous land 

surface and open topography that is favorable for the 

collection of vegetation cover and hyperspectral data. The 

dominant species in the investigation plots are Leymus 

chinensis, Stipa baicalensis and Filifolium apetalum. For 

our field study, we chose a representative area of 90×90 m. 

We established 90 m
2
 sample plots at intervals of 15 

m within the study area (i.e., n = 25 plots), excluding points 

at the edges of the overall area to avoid edge effects (Fig. 2). 

We examined vegetation cover and the associated 

hyperspectral curve data for each study plot. 

 

Hyperspectral Measurements 

 

We observed the study site from 10:00 to 14:30 on 8 August 

2009, on a sunny day. To obtain the hyperspectral 

curves, we used an ASD FieldSpec 3 portable 

spectroradiometer 

(http://www.asdi.com/products/fieldspec-3-hi-res-portable-s

pectroradiometer) with a band range of 325 to 1110 nm. The 

viewing angle of the sensor was 25°. During 

measurements, we held the sensor's probe vertically, facing 

down from a height of 1 m above the vegetation canopy, 

thereby forming a field of view of a circular field of view 

about 0.5 m in diameter projected on the land surface. The 

sampling was first calibrated using a white board to reduce 

subsequent spectral measurement errors as much as possible. 

At every sampling point, we captured five consecutive 

samples and used the average value as the spectral curve at 

the sampling point. 

We used the spectroradiometer to measure the 

spectrum of the original vegetation canopy in every sample 

plot, of land with full vegetation cover and of bare soil in the 

same plot. The spectral of the original vegetation canopy in 

a plot refers to the spectral curve measured above the 

canopy under natural conditions. To obtain the spectral 

curve with full cover of the same kinds of plants at each 

sampling point, we cut the aboveground parts of all plants in 

the measured area after measuring the spectrum of the 

canopy, then laid this material in the plot to cover all the 

ground in the plot; the spectrum measured by the 

spectroradiometer was then used to represent the same 

plot with full vegetation coverage. We then obtained a 

spectrum for bare soil in this plot by removing all of the 

aboveground plant parts. 

 

Vegetation Cover from Digital Photos 

 

We obtained photos of the vegetation in every plot under 

natural conditions using a digital camera. From these 

images, we manually traced sketched “vegetation polygons” 

as accurately as possible by means of visual interpretation, 

and then calculated the percentage of the total area covered 

by these polygons. 

 

Vegetation Cover Based on Vegetation Indices 

 

To compare different methods of using hyperspectral 

information, we examined different hyperspectral bands and 

different vegetation indices. We also compared three 

frequently used semi-empirical estimation models to 

estimate vegetation cover based on NDVI. Detailed model 

are referred to Baret et al. (1995), Carlson and Ripley (1997) 

and Gutman and Ignatov (1998). 

 

Optimal Hyperspectral Bands Selection 

 

In this study, we compared the field-measured vegetation 

cover (calculated from the digital photos) with the value 

calculated from the corresponding hyperspectral curve for 

each image. We used the following three methods to 

select wavelengths and calculate vegetation indices: 

Method 1: For each pair of red and NIR bands in the 

hyperspectral data (71×201 pairs) and calculated each 

vegetation index (see section 2.4) for images with full 

vegetation cover and exposed soil for each sampling spot for 

each of these pairs. We then calculated the vegetation cover 

using each of the three semi-empirical models. We verified 

all vegetation cover values obtained using this method using 

the field-measured vegetation cover determined from the 

digital photos as the assumed "actual" value. Based on the 

results of this comparison, we selected the optimal 

combination of bands for the vegetation cover of the study 

area. 

Method 2: We selected pairs of bands and calculated the 

corresponding vegetation index using the same approach as 

in Method 1. However, we then calculated the average 
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NDVI for all combinations of bands and used that to obtain 

the average vegetation index for images with full vegetation 

coverage and exposed soil for each sampling spot, and used 

the resulting overall mean to calculate vegetation cover 

using the three models. 

Method 3: We averaged the reflectance of all wavelengths 

in the red and NIR bands to obtain the average reflectance at 

each sample spot, then used this average to calculate the 

vegetation index and vegetation cover of land with full 

vegetation coverage and exposed soil for each sampling 

spot. 

 

Vegetation Indices Selection 

 

We compared the suitability of several vegetation indices: 

the ratio vegetation index (RVI; Tucker, 1979), the 

optimization of soil-adjusted vegetation index (OSAVI; 

Rondeaux et al., 1996), the modified soil-adjusted 

vegetation index (MSAVI2; Pu and Gong, 2000), and the 

scaled-difference vegetation index (SDVI; Jiang et al., 

2006). 

 

Results 
 

We calculated the values of the four vegetation indices 

(NDVI, RVI, OSAVI, MSAVI2) using 71×201 = 14 271 

combinations (pairs) of reflectance values in the red and 

NIR bands. We then estimated the vegetation cover based 

on the four vegetation indices using the three models 

described in section 2.2. The results were compared with the 

actual vegetation cover estimated using the digital photos 

and selected the best models and their optimal combination 

of bands for estimation of the vegetation cover. Table 1 

shows the results. 

Using the optimal red and NIR bands, to analyze the 

relation between actual vegetation cover and vegetation 

cover calculated with different vegetation indices and 

estimation methods, the maximum correlation coefficient 

between the estimated result and the actual value ranged 

from 0.67 to 0.79. Overall, the vegetation cover 

estimated with OSAVI provided the weakest correlation, and 

for that index, the lowest correlation was for the Carlson and 

Ripley model. The vegetation cover estimated with 

NDVI was relatively stable among the three models (with 

correlations ranging from 0.76 to 0.77), and the optimal 

combination of bands was also stable. When estimating the 

vegetation fractional coverage with RVI and MSAVI2, the 

correlation was lowest with the Carlson and Ripley model. 

The Gutman and Ignatov model produced the strongest 

correlations with all four vegetation indices, followed by the 

Baret et al. model.  

The correlation coefficient between the vegetation 

fractional coverage estimated based on NDVI (the 

mostly widely applied index) using the Gutman and Ignatov 

(1998) model was about 0.77, which was only slightly lower 

than the correlation coefficient (0.79) obtained by that 

model using MSAVI2. This result can be explained by the 

fact that the vegetation cover was fairly high for some plots. 

However, there is an acknowledged limitation in the 

application of NDVI when vegetation cover was greater than 

a certain threshold value. The NDVI cannot reflect the actual 

vegetation condition. MSAVI2 was designed to reduce the 

influence of soil in the image and to enhance the spectral 

sensitivity for concentrated vegetation. The success of this 

effort has been confirmed by the present results. To 

determine the applicability of this index in the field, we 

combined the index with the model that produced the best 

result, the Gutman and Ignatov model (Rmax = 0.79), and 

compared its predictions with the field-measured values. 

The resulting regression was y = 1.0137x - 8×10
-5 

(p<0.01), where y represents the estimated value and x 

represents the field-measured value. The predictions were 

reasonably accurate, with optimal wavelengths of 687 nm 

(red) and 952 nm (NIR). 

The optimal combination of bands (the one that 

produced the maximum correlation coefficient between the 

estimated and actual vegetation fractional coverage values 

for steppe vegetation in Inner Mongolia) for all three models 

using NDVI and RVI were 671 nm (red) and 951 nm (NIR). 

These values are similar to the traditional single band 

combination used to calculate NDVI. When estimating 

vegetation fractional coverage with OSAVI and MSAVI2, the 

optimal combination of bands was 687 or 690 nm (red), 

depending on the model, and 952 nm (NIR), which is 

slightly different from the optimal combination for the other 

two vegetation indices and clearly different from the 

frequently used combination of 670 nm (red) and 800 nm 

(NIR). Hence, when using hyperspectral data, selection of 

the optimal bands will greatly influence the final results. 

Therefore, it may not always be appropriate to follow 

standard practice and select a frequently used combination 

of bands without confirming that no other combination is 

more suitable for the vegetation type being studied. 

To demonstrate the importance of selecting the most 

appropriate bands, we estimated the vegetation cover using 

the above mentioned frequently used methods and 

compared the result with the estimate produced using the 

optimal combination of bands (Table 2). Comparing the 

correlation coefficients (Table 2) with the correlation 

coefficients based on the optimal combination (Table 1) 

shows that the strength of the correlation decreased for both 

methods when the optimal wavelengths were not used. The 

most obvious decrease was for NDVI, for which the 

correlation coefficient decreased from 0.77 to 0.70 for the 

Gutman and Ignatov model. RVI showed the next strongest 

decrease, with the correlation coefficient falling from 0.76 

to 0.68 for the Gutman and Ignatov model. The MSAVI2 

estimate changed least, and also produced the best 

correlation with the field-measured value, but the 

correlation was still weaker than the result obtained with the 

optimal combination of bands. These results demonstrate 

that to take maximum advantage of the hyperspectral data, it 
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is necessary to identify the optimal wavelengths for 

vegetation being studied. 

 

Discussion 
 

Hyperspectral remote sensing technique development has 

significantly promoted earth studies, especially in key 

parameters identification and modeling of terrestrial 

ecosystem due to its spectral measurement ability (Sykioti et 

al., 2012). Meanwhile, we are also challenged more and 

more in the aspect of valuable information extraction from 

massive data (Clevers et al., 2010). In order to validate 

simulation results from space remote sensing data, it is 

better to discover the relationship of these parameters with 

in-suit hyperspectral data to eliminate the influence of 

atmosphere (Delegido et al., 2010). 

In this study, we identified the optimal wavelengths to 

estimate vegetation cover when using hyperspectral data, 

Table 1: Selection of the optimal combination of bands and the best model for the estimation of vegetation cover (f) using 

hyperspectral image data 
 

Model Correlation coefficient (Rmax) and optimal red and NIR bands 

 Gutman and Ignatov (1998) Carlson and Ripley (1997) Baret et al. (1995) 

 Rmax Red NIR Rmax Red NIR Rmax Red NIR 

f (NDVI) 0.767 671 951 0.764 671 951 0.762 671 951 
f (RVI) 0.758 671 951 0.739 671 951 0.751 671 951 

f (OSAVI) 0.747 687 952 0.668 690 795 0.728 690 952 

f (MSAVI2) 0.792 687 952 0.736 690 952 0.778 687 952 

Notes: The optimal bands are those for which the vegetation cover was closest to the actual value based on analysis of the digital photos. Rmax is the 
maximum Pearson’s correlation coefficient; Red and NIR refer to the optimal red and near-infrared bands (i.e., the combination that produced the 

maximum correlation coefficient). All correlations were statistically significant (P < 0.05) 

Table 2: Correlation coefficients between the 

field-measured vegetation cover and the value estimated 

using methods 2 and 3 
 

Methods Model Gutman and 

Ignatov (1998) 

Carlson and 

Ripley (1997) 

Baret et al. 

(1995) 

Method 2 f(NDVI) 0.700 0.693 0.691 

f(RVI) 0.688 0.665 0.668 
f(OSAVI) 0.738 0.654 0.717 

f(MSAVI2) 0.771 0.723 0.758 

Method 3 f(NDVI) 0.700 0.696 0.697 
f(RVI) 0.688 0.676 0.685 

f(OSAVI) 0.725 0.643 0.705 

f(MSAVI2) 0.762 0.716 0.750 

 

 
 

Fig. 1: Location of the study area 

 
9  m 

9  m 

 
 

Fig. 2: Sample plots setting in the study area (Dots at the 

grid intersections represent the positions of the sample 

plots) 
  

 

(a)                         (b)  
 

Fig. 3: Vegetation cover estimated by visual interpretation 

of digital photos. (a) The original digital photos. (b) The 

digital photos after visual interpretation and tracing of 

vegetation polygons 
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based on the in-suit hyperspectral curves and vegetation 

cover for samples with full vegetation coverage and exposed 

soil. We also evaluate the performance of different 

vegetation indices and models when dealing with vegetation 

cover estimation. The results that vegetation cover estimated 

using a single optimal combination of bands is closer to the 

actual value than the result estimated with an average value 

(e.g., the average for the full red or full NIR band). This 

reveals the greater potential of narrow-band spectrum in 

grassland characteristics extraction than broad-band ones. 

This is similar to existing researches about other ecosystems 

(Botha et al., 2007; Meggio et al., 2010). The performance 

of three common vegetation cover estimation models and 

the vegetation indices is different. As a result, it is not only 

important to select optimal bands but also essential to select 

indices and models. For grassland vegetation types, the 

optimal combination of bands was 687 nm and 952 

nm, which is different with the frequently used combination 

of 680 nm and 800 nm (Rouse et al., 1973). 

Our results suggest that in simulation and monitoring 

of vegetation parameters based on hyperspectral data, it is 

important to identify the optimal wavelengths and models for 

the specific type of vegetation being studied instead of 

relying on average values. In this paper, we describe a simple 

and practical method for identifying the optimal bands and 

model. Although our approach provided good results for the 

estimation of vegetation cover, it's important to note that our 

results should be replicated under different environmental 

conditions (e.g., under drought or high temperature) to 

determine what factors might affect the optimal bands. 
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