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ABSTRACT 
 

More attention has been paid to estimating soil nutrient status, along with a sharp decrease in total farmland acreage, especially 

in Beijing Municipality. However, traditional site-specific investigation makes it impossible to apply it to large scale 

monitoring. The objective of this study was to evaluate and classify soil nutrient status using advanced 3S (global positioning 

system, GPS; remote sensing, RS; and geographic information system, GIS) technology. Firstly, multi-temporal Landsat TM 5 

images with 30 m spatial resolution were utilized to identify the field-scale farmlands. The overall classification accuracy 

reached 86.96%, with a kappa coefficient of 0.743. Additionally, the correlation coefficient (r) reached 0.942 by comparing the 

remote sensing-based farmland area with the statistical data. Subsequently, organic matter, total nitrogen, available phosphorus 

and available potassium from 7,435 field sample points positioned by GPS receiver, were used to generate a comprehensive 

soil nutrient index in GIS software, according to the classification criteria of Beijing Soil and Fertilizer Workshop. Finally, a 

classification map of field-scale soil nutrient levels (very high, high, moderate, low & very low) was created using the 

farmlands as mask layers. The analysis results showed that the soils at moderate and low levels dominated the Beijing’s 

farmlands, which accounted for 46.1% and 39.1%, respectively; high and very low level soils were the second place whose 

ratios were 10.4% and 4.3%, respectively; and very high level soils could be rarely found. Yanqing County, Tongzhou District 

and Changping District have better soil nutrient status as a whole. © 2012 Friends Science Publishers 
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INTRODUCTION 
 

Farmland, as one of our most basic natural resources, 

has provided the basic production materials for human 

beings to ensure crop safety. However, with the rapid 

development of society and economy as well as the 

increasing population growth, the total quantity of farmland 

has been decreasing. As a developing country, China with 

vast population and scarce land per capita has been 

experiencing a rapid expansion from farmland to industrial 

and residential uses (Tan et al., 2005). Consequently, the 

conflict between humans and farmlands has been greatly 

sharpened, especially in the regions with a well-developed 

economy (Yang & Li, 2000). To cherish and rationally 

utilize farmland resources, a number of measures have been 

carried out in China in order to achieve sustainable 

development of agriculture. The Chinese government has 

made farmland protection as a national strategic issue in 

ensuring sustainable socio-economic development, which 

must be strictly implemented for a long term (Lichtenber & 

Ding, 2008). Given recent trends of decreasing farmland 

quantity, a number of studies have been performed on how 

to assess and improve the farmland quality (McClaran et al., 

1985; Parr et al., 1992; Parks & Quimio, 1996; Gui et al., 

2009). On the basis of ensuring the quantity of farmland, 

how to improve the farmland quality has been considered to 

be a hot spot until recently. Among the various affecting 

factors to determine farmland quality, soil fertility is one of 

the important factors, which has an important economic 

value for the fast-growing economic regions, but it is 

environmentally unstable (Wander et al., 2002; Qi et al., 

2009; Hussain et al., 2010; Jabbar et al., 2011). 

Traditionally, the farmland information monitoring 

mainly depend on manually collecting site-specific data in 

the field by technical person. Conversely, innovative earth 

observation techniques, especially the remote sensing (RS) 

technology, have been extensively applied in corresponding 

studies on cropland landscape, arable land loss, spatial and 

temporal patterns of farmland, etc. (Xiao et al., 2002; Liu et 

al., 2005; Tan et al., 2005). However, most previous studies 

have primarily focused on the identification of farmland, 

farmland mapping and land use and land cover change 

(LUCC) using remote sensing dataset (Ramankutty & 

Foley, 1999; Wen, 2002; Xiao et al., 2006). Recently, the 

studies on farmland have transferred from quantity 

monitoring to the focus on the parallel analysis of quantity, 
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quality and ecological benefits. Nevertheless, remote 

sensing techniques have not been integrated into the 

assessment of soil nutrient status. 

As one of the fastest growing economic municipalities 

along with rapid urban sprawl in China, Beijing’s land use 

structures have been greatly changed since the 1980s. The 

most obvious feature is that the total amount of farmland 

has been decreasing. In comparison with the area of 4,560 

km
2
 at the initial stage of reforming and opening up in 1981, 

the farmland area has decreased to 2,876 km
2
 in 2001; while 

the number of population has increased to 17,550 thousand 

in 2009 from 8,715 thousand in 1978 (Beijing Statistical 

Information Net, http://www.bjstats.gov.cn/). Additionally, 

the farmland in Beijing has also been confronting the threats 

of quality decreasing, salinization, soil pollution, etc. 

Consequently, based on identifying farmlands, estimating 

and classifying the field-scale soil nutrient status is of great 

importance for mastering regional farmland resources and 

managing production practices, especially for the soil testing 

and fertilization (Pathak et al., 2003). Concerning the soil 

nutrient status of Beijing, some studies have been 

performed. Kong et al. (2003), based on the soil sample data 

acquired using a global positioning system (GPS) receiver, 

explored the change features and spatial distribution of soil 

nutrient of the urban-rural ecotone in Daxing District using 

spatial analysis techniques and Kriging interpolation method 

in geographic information system (GIS) software. Su et al. 

(2000) analyzed the soil fertility of farmlands in Haidian 

District and the result showed that it was generally at a 

moderate level. Lu et al. (2005) investigated the distribution 

and change features of farmland soil quality in Pinggu 

District, which showed that the soil nutrient status was 

generally at a moderate level. 

The above literature clearly shows that two limitations 

in investigating the soil nutrient status in Beijing could be 

found from previous studies. One is that the spatial scales of 

the study sites were comparatively small, because most of 

studies focused on a certain district or smaller region. The 

other is that statistical analysis methods based on sampling 

point data, were mainly used in traditional soil nutrient 

monitoring, and conversely, field-scale studies have not been 

fully carried out. The aims of the study were to (1) identify 

field-scale farmlands of Beijing using multi-temporal 
Landsat TM 5 images; (2) explore and classify the field-

scale soil nutrient status by spatial analysis and 
geostatistical functions in GIS software; and (3) analyze the 
spatial distribution characteristics of farmlands and 

corresponding soils with different nutrient levels. 

 

MATERIALS AND METHODS 
 

Introduction to the study site: Beijing, as the capital city 

of the People’s Republic of China, is located in the northern 

part of North China Plain, with a longitude range between 

115°25'-117°20' East and a latitude range between 39°38'-

40°51' North (Fig. 1a). Its geomorphological types consist 

of the northwestern mountains and southeastern plains and 

the general terrain is high in the northwest and low in the 

southeast. In the plain areas, the elevations are generally 

between 20 and 60 m in most regions (Fig. 1b). Conversely, 

they are located between 1,000 and 1,500 m in the mountain 

regions. Beijing has a sub-humid warm temperature climate 

zone, with an annual average rainfall of 430.9 mm, an 

annual average temperature of 13.1°C and a frost-free 

period of 185 days. The coldest month is January and the 

average temperature throughout the whole year is -3.9°C, 

while the average temperature of the hottest month (July) is 

26.5°C. According to the statistical data from Beijing 

Municipal Bureau of Land and Resources, there is totally 

16,410 km
2
 land area, among which the area of plains is 

6,338 km
2
 (38.6%) and it is 10,072 km

2
 (61.4%) for the 

mountains. By the end of 2010, Beijing was 

administratively divided into fourteen districts and two 

counties in accordance with the Beijing Statistical Yearbook 

2010. In those administrative divisions, Mentougou District, 

Huairou District, Pinggu District, Miyun County and 

Yanqing County were specified as the ecological 

conservation areas and they are also the regions with most 

croplands at the same time. In 2008, there was totally 

10,959.81 km
2
 cropland and the farmland area was 

2,316.88 km
2
. Yanqing County, Huairou District and 

Miyun County were the top three regions, which had the 

most farmlands. Wheat, maize and vegetation are the 

major crops in Beijing and their planting area were 

226,000 ha, 151,000 ha and 68,000 ha, respectively, in 

2009. 

Data sources and preprocessing: Two types of dataset 

including remotely sensed images and soil sampling field 

data were required in this study. Multi-temporal Landsat TM 

5 images were selected in our study. This satellite has a 

spatial resolution in 30 m, a swath width in 185 km and a 

16d revisiting period, which includes six multispectral 

bands with a spectral range of 0.45-2.35 µm and a thermal 

infrared band, with a spatial resolution of 120 m and a 

spectral range of 10.40-12.50 µm. Two scenes, with the 

paths and rows of p123/r32 and p123/r33, were required to 

cover the whole study area. To accurately identify the spatial 

distribution of field-scale farmlands, multi-temporal images 

were acquired during the growing seasons of various grain 

crops. Three images (15 April, 20 July and 22 September) of 

p123/r32 were totally acquired in 2009 and only an image of 

p123/r33 was collected due to its small percentage of 

covering the study area. Before identifying farmland fields 

using the remote sensing images, some preprocessing 

procedures must be firstly performed including radiometric 

calibration, atmospheric correction and geometric 

correction. In our study, radiometric calibrations were 

conducted in accordance with the header information from 

Landsat TM 5 images in ENVI (The Environment for 

Visualizing Images, Research Systems, Inc.) image analysis 

software, and then atmospheric corrections were carried out 

using the FLAASH (Fast Light-of-sight Atmospheric 



 

EVALUATING SOIL NUTRIENT STATUS USING 3S TECHNOLOGY / Int. J. Agric. Biol., Vol. 14, No. 5, 2012 

 691 

Analysis of Spectral Hypercubes) module integrated with 

ENVI. Subsequently, geometric corrections including plane 

corrections and ortho-rectifications were conducted in 

ERDAS (Earth Resource Data Analysis System) image 

processing system, which required that the root mean square 

errors (RMSEs) were within 0.5 pixels. The reference 
images for geometric corrections were taken from the 

Landsat Geocover dataset (http://glcf.umiacs.umd.edu/), 
which provided a collection of high resolution satellite 

imagery in a standardized, orthorectified format, and the 

ASTER (Advanced Thermal & Emission Radiometer) 

GDEM (Global Digital Elevation Map) images from 

https://wist.echo.nasa.gov/api/ with 30 m spatial resolution 

were used as the elevation reference images. After the 

images were preprocessed, image mosaicing of two scenes 

and masking by the Beijing administrative boundary were 

performed to generate the remote sensing image of Beijing 

Municipality. 

The site-specific soil nutrient data were the 7,435 field 

sampling points collected in 2008 and they were positioned 

using a sub-meter GPS receiver (Fig. 1b). Table І was the 

collected soil nutrient indicators for each sampling point. 

Afterwards, those point data with longitude and latitude 

coordinates were imported into ArcMap platform and were 

further converted into ESRI shapefile format for subsequent 
geospatial analysis and interpolation. Finally, they were 

statistically preprocessed including frequency analysis, 
central tendency, degree of dispersion and distribution 
characteristics in ArcMap, and were interpolated to map 
the soil nutrient indicators. 

Identification of field-scale farmlands using remotely 

sensed images: Multi-temporal Landsat TM 5 images were 

used to identify field-scale farmlands by support vector 

machine (SVM) supervised classification in ENVI (Lv & 

Liu, 2010). Water body, vegetation and non-vegetation areas 

were only selected as the regions of interest (ROIs) to 

perform classification, and three classification maps were 

obtained. Then, those maps were layerstacked to form a 

merged map according to the acquisition time, and the 

classification was further performed on the layerstacked 

map by selecting specific ROIs. When water bodies, forest 

lands and built-up areas were removed from the 

classification results, the farmland map was obtained and 

converted to shapefile format after post-classification 

processes including seiving classes, combine classes, etc. To 

validate the identification result, two methods were utilized 

simultaneously: one was to form a confusion matrix to 

calculate the overall classification accuracy and kappa 

coefficient; and the other was to evaluate the classification 

accuracy by the farmland statistical area from Beijing 

statistical information net (BSIN, 

http://www.bjstats.gov.cn/sjfb/bssj/ndsj/). 
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Where, N is the total number of pixels in all the 

ground truth classes; xii is the confusion matrix diagonals; k 

is the total classes; xiΣ is the sum of the ground truth pixels 

in i class; xΣi is the sum of the classified pixels in that class. 

Classification criteria for soil nutrient status: The 

classification criteria adopted hear was the regulation for 

gradation and classification on soil nutrient developed by 

Beijing Soil and Fertilizer Work Station (BSFWS) in 

December 2006. In this regulation, four indicators including 

organic matter, total nitrogen (N) or alkali-hydrolyzable N, 

available phosphorus (P) and available potassium (K) were 

selected. At the same time, referring to the historical 

documents and experts’ suggestions, the weighted 

coefficients and scores of each indicator were also given 

according to the soil nutrient features and the contributions 

to soil nutrient status (Table П). In addition, a 

comprehensive index called the soil nutrient index (SNI) 

was also recommended by the BSWFS, which was 

calculated by the weighted-sum method (Eq. 2). 
 

    ( =1, 2, 3, ......., )i iSNI F W i n= ×∑           (2) 

 

Where Fi is the score value of the ith edaphic 

indicator; Wi is the weighted coefficient of the ith edaphic 

indicator; n is the total number of selected edaphic 

indicators. 

Spatial interpolation of soil nutrient indicators: To 

perform the rater calculation in ArcGIS Spatial Analyst, 

those sampling point data of soil nutrient must be 

interpolated to rater format. An interpolation method must 

be used for generating continuous surface grids from point 

data. Three types of interpolation methods including inverse 

distance weighted (IDW), Spline and Kriging are available 

in ArcMap platform. Considering the distribution of large 

amount of sample points, Kriging was utilized in our study 

and the Kriging estimator is given by a linear combination 

(Eq. 3). This method is a group of geostatistical techniques 

to interpolate the value of a random field at an unobserved 

location from observations of its value at nearby locations 

(Oliver & Webster, 1990). It has been widely applied in 

diverse research fields such as underground water 

simulation, soil mapping (Hengl et al., 2004; Rabelo & 

Wendland, 2009). Consequently, four raster interpolation 

maps with 30 m spatial resolution of four soil indicators 

were created using such a method. Then, the SNI was 

calculated using the raster calculator tool in ArcMap 

according to the Eq. 2 and Table П. Finally, the level 

classification map of soil nutrient status was generated and 

exported to raster format with 30 m using the SNI values of 

each pixel. When the map was masked by the Beijing 

administrative boundary and field-scale farmland map, the 

soil nutrient levels of Beijing were specified. 
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Where Z(x0) represents the value of a random field 

Z(x) at an unobserved location x0; ( )0Z x
∧

 is the best linear 

unbiased estimator of Z(x0); Z(xi) are the observed values, 

i=1, 2, …, n of the random field at nearby locations; and ωi 

are the weights, i=1, 2, …, n. 

 

RESULTS 
 

Identified farmlands and their spatial distribution: It 

could be found that the land features in bright purple color 

were generally classified as the farmlands by comparing the 

original false color fused image (Fig. 2a) and the identified 

farmlands (Fig. 2b). After obtaining the farmlands based on 

remotely sensed images, it was extremely necessary to 

validate its classification for subsequent analysis. According 

to the confusion matrix, the overall classification accuracy 

reached 86.96%, with a kappa coefficient of 0.743. In 

addition, the linear regression was performed between the 

remote sensing-based farmland area and the statistical data 

from the BSIN. The correlation coefficient (r) reached 0.942 

(Fig. 3). In the identified result (Fig. 2b), farmlands in 

Beijing mainly distributed in the southeastern plain areas. 

Specifically, the farmland distributions in Tongzhou District, 

Shunyi District, and Daxing District were the densest, which 

covered most of the land cover types in three districts. 

Conversely, due to the existence of mountain 

geomorphology, most of farmlands distributed just in the 

plain regions in Fangshan District, Mentougou District, 

Huirou District, Pinggu District, Changping District, Miyun 

County and Yanqing County. In the central regions of 

Beijing, built-up areas dominates the land use types and 

there was nearly no farmlands in Chaoyang District, 

Shijingshan District, Fengtai District and central urban 

areas. 

Descriptive statistics of soil nutrient indicators: 

Depending on the interpolated raster maps of four soil 

indicators, descriptive statistics were performed by Beijing’s 

administrative divisions (Table Ш). For the organic matter, 

it had the highest content in Fangshan District and the mean 

was 23.34 g kg
-1

, while it had also the maximum standard 

deviation (StdDev) of 23.69, which showed that the spatial 

dispersion of this indicator was the largest in this region. 

Conversely, Pinggu District had the lowest content and its 

mean was only 1.78 g kg
-1

, and its StdDev (0.77) was also 

the smallest. Considering the total N, Huairou District had 

Table І: Indicators description of several sampling points of soil nutrient 
 

No. Land use type Organic matter (g kg-1) Available P 

(mg kg-1) 

Available K 

(mg kg-1) 

Total N 

(g kg-1) 

Soil PH Alkali-hydrolyzable N 

(mg kg-1) 

Slowly available K 

(mg kg-1) 

1 Summer maize 17.38 20.17 96.00 0.92 8.49 61.00 796.00 
2 Winter wheat 17.28 10.34 90.00 0.97 8.28 79.00 706.00 

3 Spring maize 13.36 30.79 82.00 0.85 8.12 65.00 582.00 

4 Summer maize 18.55 15.45 108.00 1.15 8.13 138.00 592.00 
5 Spring maize 19.28 85.25 160.00 1.21 7.93 97.00 528.00 

6 - 10.24 4.44 64.00 0.73 8.39 52.00 432.00 

7 - 11.09 12.50 80.00 0.66 8.65 51.00 596.00 
… … … … … … … … … 

 

Table П: Scores and weighted coefficients of selected edaphic indicators to classify the soil nutrients* 
 

Level Organic matter 

(g kg-1)/score 

Total N 

(g kg-1)/score 

alkali-hydrolyzable N 

(g kg-1)/score 

Available P  

(g kg-1)/score 

Available K 

(g kg-1)/score 

SNI 

Very high ≥25/100 ≥1.20/100 ≥120/100 ≥90/100 ≥155/100 100-95 

High (25-20)/80 (1.20-1.00)/80 (100-90)/80 (90-60)/80 (155-125)/80 95-75 

Moderate (20-15)/60 (1.00-0.80)/60 (90-60)/60 (60-30)/60 (125-100)/60 75-50 
Low (15-10)/40 (0.80-0.65)/40 (60-45)/40 (30-15)/40 (100-70)/40 50-30 

Very low <10/20 <0.65/20 <45/20 <15/20 <70/20 30-0 

Weight 0.3 0.25 0.25 0.20 - 

*Data source: http://nw.bjtzh.gov.cn/tongzhouweb/new%20soil/trfl-yfpj-pingjiafangfa.html. 

 

Table Ш: Descriptive statistics of soil nutrient indicators according to Beijing’s administrative divisions 
 

Organic matter (g kg-1) Total N (g kg-1) Available P (g kg-1) Available K (g kg-1) Region No. 

Max Min Mean SD Max Min Mean SD Max Min Mean SD Max Min Mean SD 

Huairou 13 28.82 10.55 17.01 4.86 1.87 0.64 1.04 0.32 185.61 5.52 50.08 53.07 302.40 73.32 153.69 63.60 

Miyun 502 67.00 0.85 14.74 6.64 0 3.41 0.84 0.37 401.7 1.93 23.26 32.04 700.00 4.93 144.80 77.89 

Changping 766 56.52 1.41 17.13 6.17 3.17 0.13 0.98 0.33 204.84 1.21 35.53 40.29 948.73 17.48 135.61 130.50 
Shunyi 375 28.63 5.53 15.14 3.53 2.32 0.38 0.94 0.26 286.21 1.29 30.47 35.79 948.00 44.00 114.62 77.98 

Pinggu 1174 5.51 -0.14 1.78 0.77 0.26 0 0.11 0.03 350.60 0 32.58 37.38 1180.00 0 185.85 132.05 

Tongzhou 1466 38.9 1.26 16.95 4.56 5.88 0.07 0.98 0.34 544.4 0.3 48.00 55.55 950.0 40.0 160.67 90.19 
Daxing 413 26.11 2.45 11.78 4.10 1.39 0 0.18 0.34 351.5 1.1 29.77 39.40 1206.1 21.1 110.03 109.21 

Fangshan 1788 435.42 0.08 23.34 23.69 - - - - 884.75 0.24 34.72 47.38 3330.05 0 176.49 167.60 
Mentougou 778 8.75 0.06 2.37 1.15 3.75 0 0.71 0.43 316.33 0.02 17.23 27.13 950.00 0 204.00 138.10 
Beijing 7275 435.42 -0.14 13.99 14.49 5.88 0 0.52 0.51 884.75 0 33.53 44.01 3330.05 0 162.92 130.67 
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the highest content and its mean was 1.04 g kg
-1

, while it 

was lowest in Pinggu District with only a mean of 0.11 g 

kg
-1

. In addition, Huairou, Miyun, Changping, Shunyi, 

Tongzhou and Daxing had the similar StdDev (near 0.3) in 

total N, which showed that those regions had the very 

similar dispersion in this indicator. Conversely, Pinggu had 

the smallest dispersion with only a StdDev of 0.03. In the 

available P, Huairou had the highest content and the mean 

was 50.08 g kg
-1

, while Mentougou had the smallest content 

with only a mean of 17.23 g kg
-1

. The StdDev of this 

indicator was maximum (55.55) in Tongzhou and minimum 

(27.13) in Mentougou. In the available K, Huairou had also 

the highest content and the mean was 204.00 g kg
-1

, while 

Daxing had the smallest content with only a mean of 17.23 

g kg
-1

. The StdDev of this indicator was maximum (167.60) 

in Fangshan and minimum (63.60) in Huairou. As a whole, 

in four soil nutrient indicators, the StdDev of available K 

was the largest which showed that this indicator had the 

largest differences in different regions. Conversely, the 

total N had the smallest changes among those 

administrative divisions. 

Assessment of soil nutrient levels: As shown in the soil 

nutrient level map (Fig. 4a), we could find that the overall 

soil nutrient status was low in Beijing. After statistically and 

spatially investigating the classification result, the analysis 

results showed that the soil nutrient status in Beijing was 

generally at moderate and low levels, which accounted for 

46.1% and 39.1%, respectively. The moderate level soils 

primarily distributed in Yanqing, Tongzhou, Fangshan and 

Shunyi, while the low level soils could be found in Daxing, 

Miyun and Pinggu. In comparison with the moderate and 

low level soils, their ratios were 10.4% and 4.3%, 

respectively for the soils at high and very low levels. The 

high level soils primarily distributed in Yanqing, 

Tongzhou, Changping, Haidian and Shunyi, while they 

could be found in Daxing, Miyun and Pinggu for the 

very low level soils. Conversely, there were almost no 

very high level soils. To validate the classification 
accuracy, the monitoring results from the BSFWS were 
used, which were obtained by 292 long-term 

monitoring points at fixed sites. According to the 

monitoring report from the BSFWS in 2006, the ratio of 

soils with very high, high, moderate, low and very low 

levels were 0.7%, 17.5%, 44.4%, 34.3% and 3.1% in 

comparison with 0%, 10.4%,  46.1%, 39.1% and 4.3% 

derived from 3S technology. 

 

DISCUSSION 
 

As can be seen in Fig. 2a, different land features have 

very diverse colors and textures in the false color fused 

Fig. 1: Geographic location (a) and elevation (b) maps of the study site 
 

 
 

Fig. 2: The identified farmland fields of Beijing City using multi-temporal Landsat TM 5 remotely sensed 

images 
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image. However, confusion class phenomena still exited 

among different land features such as farmlands and built-

up areas. Specifically, a farmland show in light purple, 

while a built-up area shows in deep purple. Therefore, to 

more accurately identify the farmlands, more 

comprehensive information must be used to better separate 

the farmlands from other land features including spectra, 

texture, digital elevation model (DEM) as well as its 

derived slope and aspect, etc. Additionally, the seasonal 

characteristics of green vegetation must also be considered. 

In comparison with single image, multi-temporal images 

have more seasonal features for identifying specific land 

features, especially for those objects covered with grain 

crops (Maracci & Aifadopoulou, 1990; Murthy et al., 

2003). Phenology information is a useful addition in 

assisting in selecting the optimal remotely sensed images 

(Vina et al., 2004; Richardson et al., 2009). After obtaining 

the field-scale farmlands, its classification accuracy must 

be validated to determine whether it could meet the 

accuracy requirement for further spatial analysis of soil 

nutrient status (Lucas et al., 1994; Congalton & Green, 

1999). 

However, according to the distribution trend of data 

point in Fig. 3, the farmland area derived from remote 

sensing images was generally greater than that from 

statistical data for most of districts and counties. The reason 

for this phenomenon was that they mainly considered the 

land use properties and categorized those land features used 

to plant grain crops as the farmlands for the statistical data. 

Conversely, in the process of identifying farmlands using 

remote sensing images, the land features were classified as 

farmlands in accordance with the spatial structure, texture 

and spectral information from selected ROIs. As a result, 

unused land, bare land and some built-up areas were 

wrongly classified as farmlands, so the area was greater than 

that of statistical data. Due to the constraint of spatial and 

spectral resolutions for Landsat TM images, mixed pixels 

and spectral similarities caused the misclassification and 

omission in identifying farmlands. To obtain more detailed 

farmland information, remotely sensed images with higher 

spatial resolutions have to be acquired such as QuickBird, 

SPOT, IKONOS (Yang et al., 2007; Levinab et al., 2009; 

Zhang et al., 2010). 

The levels of soil nutrient status were further classified 

on the basis of identifying field-scale farmlands. After 

classifying the soil nutrient levels, it was extremely 

necessary to verify the classification accuracy. In this study, 

statistical data were used to compare with the identification 

result derived from 3S technology. Specifically, the 

moderate level soils were taken as an example to compare 

the classification with statistical data (Fig. 4b). It could be 

found that there were some differences between remote 

sensing derived and statistical data. Especially, the 

difference was the largest in Pinggu District, because the 

farmlands there were primarily used to plant fruit trees and 

they were mainly used for planting grain crops in other 

districts or counties. The comparative analysis showed that 

there were some differences between the assessment result 

in this study and the monitoring result from the BSFWS. 

The reason was that the monitoring result from the BSFWS 

Fig. 3: Comparative analysis between remote sensing 

based farmlands area and statistical data 
 

 

Fig. 4: Spatial distribution of field-scale soil nutrient levels of Beijing City 
 

 



 

EVALUATING SOIL NUTRIENT STATUS USING 3S TECHNOLOGY / Int. J. Agric. Biol., Vol. 14, No. 5, 2012 

 695 

was obtained by statistical analysis, while remote sensing 

derived classification considered all the farmlands. Another 

reason is that specific geomorphic types have also 

determined that the spatial distribution of farmlands is not 

even in the study site, so the field sample point layout 

cannot cover the whole study area. Consequently, the 

number of sample data is larger in the regions with dense 

farmlands, while it is small or none in the mountain areas. 

The spatial interpolation accuracies of four edaphic 

indicators will be affected to a certain degree. In addition, 

only four soil indicators (organic matter, total N, available P 

& available K) were incorporated into the assessment index 

in our study, so it is inevitable that the comprehensive 

integrity of SNI is not very satisfactory. More indicators will 

be considered in the subsequent analysis. Furthermore, 

some soil nutrient indicators usually show the variable 

characteristics due to the influence of human activities, 

multi-temporal assessments of soil nutrient status will be 

required to reflect the dynamic change process over a 

certain times pan. In the further research, to better 

improve the soil quality, it is more essential to find 

out the primary driving factors, which cause the 

changes of soil nutrient status and provide effective 

strategies by analyzing time series soil nutrient conditions 

(Wang & Gong, 1998; Arshad & Martin, 2002; Chen et al., 

2006). 

In conclusion, advanced 3S technology can fast and 

effectively identify field-scale farmlands and map the soil 

nutrient status over a large spatial scale, but more field 

sampling data must be required as the prior knowledge to 

assist in classification and validation. It is required that 

multi-temporal remotely sensed images are used to identify 

farmlands due to the bad influence of similarities between 

different land features. The Landsat TM 5 images with 30 m 

spatial resolution can satisfy the needs of identifying 

farmlands and classifying field-scale soil nutrient status. 

However, there are some differences between the statistical 

and remote sensing derived data, due to their different 

analysis principles. To better validate the classification 

accuracy derived from Landsat TM images, the images with 

more high spatial resolution will be needed in future 

studies. 
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