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ABSTRACT 
 
Several measures of robustness for designs, which is considered to be optimal with respect to A-, D-, E-, and G-optimality 
criteria. When several designs are proposed for comparison, then their optimality properties can be compared for the 
choice of design. To compare a class of central composite designs on the basis of optimality, a simple characterization of 
the optimality may be given in terms of the eigen values of )( XX ′ . Trace criterion has been used to measure the effect of 
missing observations on the variances of the estimates of the parameters and response. The different combinations of 
missing observations have different effect on the variances of the estimates of the parameters. Some combinations of these 
observations are more informative than others. The most informative combination of missing observations increase the 
variance maximum as compared to a least informative combination of missing observations. 
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INTRODUCTION 
 
 There are several measures of robustness for 
designs, which is considered to be optimal with respect to 
a particular criterion. Optimum experimental designs were 
originally developed by Kiefer (1959). For an overview of 
optimality criteria, see Box and Draper (1971), Box and 
Draper (1987), Atkinson and Donev (1992) and 
Pukelsheim (1993).  
 A k-factor central composite design (CCD) consists 
of fn =factorial points ‘f’, an =2k axial points ‘a’ and cn  
centre points ‘c’ at the design origin. Consider a second-
order response surface model in k variables of the form: 

εβ += XY , where Y  is a vector of responses, X is an pn×  
model design matrix, β  is a vector of unknown 
parameters and ε  is a 1×P vector of errors. For a design 
matrix X, most design optimality criteria are based on 
optimal properties of the XX ′ matrix and the levels or 
settings of the X matrix. When several designs are 
purposed for comparison, then their optimality properties 
may be compared for the choice of design.  
 The experimenter should be aware that a design 
superior to other designs by one optimality criterion might 
perform poorly when evaluated by another criterion. 
Therefore the performance of the design may be 
dependent on the choice of an evaluation criterion. Four 
commonly used criteria for design evaluation are A-, D-, 
E-, and G-optimality criteria. By considering the single 
value for the designs comparison, much information is 
lost regarding the design’s performance.  
 When competing designs are compared, the E-
criterion may be used over the design space. In such 
cases, the objective is to maximize the smallest eigen 
value of the information matrix XX ′  over the design 
region to achieve the E-optimal design. 
A measure of optimality based on the eigen values of 
information matrix in CCD. One of the most popular 
and commonly used classes of experimental designs for 

quadratic regression is the central composite designs. To 
compare a class of CCD’s on the basis of optimality, a 
simple characterization of the optimality may be given in 
terms of the eigenvalues of )( XX ′ . By using the coding 
convention on the second-order polynomial equation, the 
eigen values of information matrix ( )XX ′  in CCD are 
 

2/]2/1]2)1((42))1([()1([1 kTnfknenfkenfke −×−+×−+−+++−+=λ

2/]2/1]2)1((42))1([()1([2 kTnfknenfkenfke −×−+×−+−+−+−+=λ

 
 k  eigen values with Ti =λ   i = 3, 
..., k+2 
 (k-1) eigen values with fej −=λ  j= 
(k+3),..., (2k+1) 
 k (k-1) / 2 eigen values with fu =λ   u= 
(2k+2),..., p 
  Where p=1+2k+ k (k-1) / 2, 
T= fn +2x2  42α+= fne and fnf = . 
 A particular member of CCD class can be identified 
by using the eigen values of information matrix of the 
model understudy. Different values of α can be used to 
define eigen values for various members of the class such 
as cuboidal, orthogonal, rotatable, BD outlier robust, 
spherical, minimaxloss1, minimaxloss2 and 
minimaxloss3 designs. The minimum of the maximum 
losses, of combinations of m missing observations, for the 
whole range of α is called minimaxloss. The CCD at this 
particular value of α corresponding to minimaxloss is 
called minimaxloss design for a combination of m (=1, 2, 
3, …) missing observations. 
 If eigen values of the information matrix for the 
design understudy match with the eigen values of a 
compatible member of the CCD class, the design 
understudy could be identified as such.  
 Design optimality is an extremely interesting and 
useful tool for comparing the class of CCD particularly in 
terms of eigen values of the information matrix. By using 
these eigen values, the efficiency of different designs of 
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CCD class can be compared.  
  The eigen values λ1, λ2, λi (i = 3,..., k+2), λj(j=k+3, 
..., 2k+1) and λu(u= 2k+2, ..., p) of the information matrix 
can be obtained as given in Table I is the case of the 
particular CCD used for demonstration.  
 
Table I. Eigen values of the CCD for k=2, nf =4 
factorial, na =4 axial, and n=nf+na+nc design points at 
α=1.41421 
 

nc → 1 2 3 4 
λ1 24.3427 24.7047 25.0866 25.4891 
λ2 0.657281 1.2953 1.91337 2.51087 
λ3 8 8 8 8 
λ4 8 8 8 8 
λ5 8 8 8 8 
λ6 4 4 4 4 

 
  It can be seen from this table that the quantitative 
values of λ1and λ2 depend on k (variables), nf factorial 
points, α the distance of the axial points from the design 
origin, nc centre and n design points in the experiment 
under study i.e. the values of λ1and λ2 are changed by 
changing the value of any of k, nf, nc, n, α. The group of k 
from the remaining eigen values, with Ti =λ = fn +2x2 

(i = 
3, ..., k+2), depend on nf, the number of factorial points 
and the α values. The group of (k-1) from the remaining 
eigen values, with fej −=λ =2α4 where (j=k+3, ..., 2k+1), 
depend only on the α values. The last group of k (k-1) / 2 
eigen values, with fu =λ =nf where (u= 2k+2,..., p), 
depends only on the nf factorial points. For the same 
configurations of the central composite designs, uλ is 
constant for fixed factorial points and λ1, λ2, iλ and jλ are 
the function of the α  i.e. these eigen values are the 
functions of the settings of the model matrix X. λ1 is the 
largest eigen value among p eigen values and increasing 
function ofα  while 2λ is the decreasing and increasing 
function of α  values. It can further be observed from 
Table I that no eigen values except λ1 & λ2 gets affected 

by the change in number of centre points. 
 Kiefer (1958, 1959) undertook a systematic study of 
the optimality of the experimental designs in a series of 
papers where various optimality criteria were discussed. 
To explain the various optimality criteria, let 

n
XX

M
)(

)(
′

=ζ  

is the moment matrix for a design measure ζ and H 
denote the class of all design measures on the 
experimental region R. In CCD, Lucas (1974) proved that 
the maximum of XX ′  is an increasing function of α . This 
is achieved only when the axial points are moved to the 
extremes of the experimental region R. The maximum 
value of )(ζM  is obtained, when the design measure is D-
optimal. A design measure is D-optimal if it maximizes  

)(ζM = 
[ ] [ ] [ ]

pn

kTfkenkfeCfKT
K
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 over H. It is 

equivalent to the G- optimality of minimization of the 
maximum variance of the estimated response, where p is 
the number of parameters in the model. In this case, if 
design points are fixed, then )(ζM  is the function of α 
values. A design measure is A-optimal, if it maximizes 

)(

1

ξλ∑
=

p

i
i or equivalently to minimize 1))(( −ζMtr over H, 

where “tr” represent trace. 
 First of all Wald (1943) mentioned the E-optimality 
criterion for designs in testing hypothesis. The E-
optimality property was proved by Ehrenfeld (1953). By 
Lucas (1977) approach, E-optimality can be described as 
minimizing the variance of the linear combination of 
regression coefficient having maximum variance. A 
design measure is E-optimal if it maximizes the smallest 
eigenvalue of )(ζM  or ( )XX ′  over H. The maximum of the 
minimum eigen value of n × )(ζM = ( )XX ′  is  

2/]2/1]2)1((42))1([()1([2 kTnfknenfkenfke −×−+×−+−+−+−+=λ

 for the class of central composite designs such as 
orthogonal, rotatable, spherical, BD outlier robust and 
minimaxloss3 designs. The maximum of the minimum 
eigen values are given in the Table II for k=2 to 6 for the 

Table II. Maximum of minimum eigen values for the range of 1 ≤≤α 3 
 
Variables (k)  

Min ( minλ ) 
Range of theα  for minimum 
eigen value Max ( minλ ) for the range 1 ≤≤α 3 

2 5λ =2 atα =1.0 

2λ =2.34315 atα =1.189 

4λ =4.0 atα =2.0 

1.0 ≤≤α 1.04746 
1.04746 < ≤α 2.0 
2.0 ≤  α   

2λ =* 4λ  =4.0 atα =2.0  
 

3 5λ =2 atα =1.0 

2λ =2.90033 atα =1.624 

1.0 ≤≤ α 1.16368 
1.16368< α  

2λ =6.68998 at α=3.0 
 

4 5λ =2 atα =1.0 

2λ =3.16702 atα =1.95 

1.0 ≤≤ α 1.2592 
1.2592< α  

2λ =6.89588 at α=3.0 
  

5 5λ =2 atα =1.0 

2λ =3.3216 atα =2.2125 

1.0 ≤≤ α 1.3389 
1.3389< α  

2λ =6.39369 at α=3.0  

6 5λ =2 atα =1.0 

2λ =3.42417 atα =2.4385 

1.0 ≤≤α 1.40695 
1.40695< α  

2λ =5.37523 at α=3.0 

 * 4λ  = is constant for specified fn  at all the values α  i.e. 4λ  =4.0 for 1 ≤≤α 3. 
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comparison of different CCD’s. 
Effect of m missing observations on different estimates 
of the model understudy. Missing values can occur at 
random by design. If any m observations are missing, 
which may not necessarily be the first m observations or 
even the contiguous one, we partitioned the response 

vector Y  and model design matrix X as
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

rY
mY  

and ⎥
⎦

⎤
⎢
⎣

⎡

rX
mX respectively, after having shifted the missing 

observations along with their corresponding rows in the 
model design matrix at the top of both of the matrices. 
Thus mY consists of m missing observations and 

mX consists of m respective rows. The information matrix 
( )XX ′ may be written as: 

 ′ = ′ + ′X X X X X Xm m r r   
 Let iXXXiXiiR 1)( −′= , where i = r, m 
 
β̂ is the least square estimate of the parameter vector β  

when there are no missing observations and ∗
β̂ is also the 

least square estimate for the parameters β when m 
observations are missing. After substituting m missing 
values in mY  by quantities  

[ ]′= mFFF ,...,1  
Where (F1, …, Fm) are the estimates of the missing 
observations that minimize the residual sum of square and 

consequently variance-covariance of estimates of the 
parameters. This, in turn, is equivalent to equating F to its 
expected value with the parameter β  replaced by the 

estimate of β calculated for the augmented data, ∗
β̂ . 

McKee and Kshirsager (1982) showed that the least 

square estimates of 
β

 based on the remaining (n-m) 
observations )2,1( nymymy L++  is given by 
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β̂ˆ

ˆ X
rY

F
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 Where   [ ]′++= nymymyrY L2,1   

Where ∗
Ŷ is an estimate of the response vector with m 

missing values substituted by F . 
Akhtar and Prescott (1987), and McKee and Kshirsager 
(1982) proved the following results by using the estimates 
of the parameters due to m missing observations.  

i) rYmrRmmRIF 1)( −−=  

ii) ]1)(1)(1)(1)[(2)
*ˆ( −′−−′−′+−′= XXmXmmRImXXXXXVar σβ  

Therefore the increase in the variance covariance matrix 
of ∗

β̂ as compared to β̂ is  

iii) )ˆ(
∗

βV -V )ˆ(β = 1)(1)(1)(2 −′−−′−′ XXmXmmRImXXXσ  
Which can be derived and simplified as follows: 
  =>  rYmrRFmmRF +=  

Table III. Relative increase in variance of ∗
β̂  and 

∗
Ŷ due to a combination of three missing observations 

 
Sr. 
No. 

Relative increase 

in variances of 
∗

β̂ due to three  

missing  observations 

Relative increase 
in variance of *Ŷ  due to 
three missing 
observations 

No. of Combinations of three 
missing observations 

Combinations of three missing 
observations  

1 1.05882 0.500000  4 9,10,11 ccc  
2 0.607843 0.444444   24 1,9,10 fcc  
3 0.529412 0.444444   24 5,9,10 acc  
4 0.764706 0.722222   8 1,4,9 ffc  
5 0.794118 0.722222   16 1,2,9 ffc  
6 0.567495 0.628385   32 1,5,9 fac  
7 1.70588 1.50000   4 1,2,3 fff  
8 0.558824 0.722222   16 5,7,9 aac  
9 0.876021 0.967340  4 1,2,7 ffa  
10 0.529412 0.722222   8 5,6,9 aac  
11 1.68461 2.244629  32 1,6,9 fac  
12 0.721467 0.967340   4 1,5,7 faa  
13 2.17647 2.833333   8 1,4,5 ffa  
14 1.00000 1.500000   4 5,6,7 aaa  
15 1.94118 2.833333  8 1,5,6 faa  
16 5.23529 6.166666   8 1,2,5 ffa  
17 4.52941 6.166666  8 1,5,8 faa  
18 16.1828 27.36599   4 1,2,8 ffa  
19 18.6903 27.36599  4 1,6,8 faa  

The sequence of relative increase in variances of
∗

β̂  and 
∗

Ŷ is due to the combinations of three missing observations is changed by changing the 

values of α . The design with missing observations is the best design among designs of the same configuration which has minimum variance 
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The variance of the estimate ∗
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∗
β̂ˆ

ˆ X
rY

F
Y of the 

response vector Y due to m missing observations is 

XrXrXXXVarXYVar ′−′=′
∗

=
∗ 1)(2)ˆ()ˆ( σβ  

The increase in the variance covariance matrix of ∗
β̂ as 

compared to β̂  is 

⎥⎦
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By using the trace criterion technique, the relative 
increase in variances of the estimates of the parameter β  
is 
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 The different combinations of missing observations 
have different effect on the variances of the estimates of 
the parameters. For more detail see Akram (2002). The 
loss of a centre point is not as bad as the loss of a factorial 
point or an axial point when measuring the variances, or 
relative efficiency. Some combinations of these 
observations are more informative than the other 
combinations. The combination of design points may be 
defined as the most informative or influential points 
because, when it is missing, the loss efficiency is 
maximum and also variance is increased maximum. The 
most informative combination of missing observations 
increase the variance maximum as compared to a least 
informative combination of missing observations. 
 Similarly the change in the variance of the response 
estimate with missing observations may be described as. 

)ˆ(
∗

YVar - )ˆ(YVar = XXXrXrXX ′⎥⎦
⎤

⎢⎣
⎡ −′−−′ 1)(1)(2σ  

The relative increase in the variance (RIV) of the 
estimate ∗

Ŷ of the response vector Y due to m missing 
observations may be explained as: 
R.I.V. 

=
)]ˆ([
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Where ]1)([)( XXXXtrRtr ′−′= =∑ =++= pcrcnaranfrfnuur ) , 

fr , ar , cr are the diagonal elements of R matrix and p is 
the number of the parameters in the model under study.  
The relative increase in variances of ∗

β̂  and ∗
Ŷ  i.e. 

)]ˆ([
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 and 
)]ˆ([

)]ˆ([)]
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YVartrYVartr −  due to a 

combination of three missing observations with k=2, 
fn =4 factorial, an =4 axial and cn =4 centre and n=12 

design points atα = 2  is shown in Table III. 
 The sequence of relative increase in variances of ∗

β̂  

and ∗
Ŷ is due to the combinations of three missing 

observations is changed by changing the values of α . The 
design with missing observations is the best design among 
designs of the same configuration which has minimum 
variance. 
 
CONCLUSION 
 
 Computations are carried out in terms of eigen 
values for the comparison of the class of CCD’s on the 
basis of E-optimality.  
 We found the increase in the variance for CCD’s 
when a combination of three observations is missing. Due 
to missing a combination of three observations, the 
increase in variance of the estimates is less as the number 
of design points is increased regardless of whether the 
missing combination consists of factorial, axial or centre 
points. The missing of an axial point may create more 
problem than the missing of a factorial point when 
measuring the variance for k ≥ 4. If in experiment, a most 
informative combination of observations is missing, the 
variance will then be more compared to a situation when a 
least informative combination of observations is missing. 
The more informative combinations are fff, ffa, faa, aaa 
that are cause to increase the variance maximum.  
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