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ABSTRACT 
 
The present study was carried out to assess inter and intra field spatial variability based on Apparent Electrical Conductivity 
(ECa) data at different depths of soil. Further, Principal Component Analysis (PCA) and Cluster Analysis (CA) were carried 
out to study the distinct soil variations based on field-scale ECa measurements. PCA results of score plot were observed to 
verify pattern matching between measured soil spatial variability representatives i.e., ECa, crop yield and variable input 
nutrient rates. The paper further reports delineation of management zones (MZs) using ECa and crop yield data and PCA, 
hierarchical clustering and fuzzy c-means (FCM) clustering algorithms besides finding predictions for un-sampled spatial 
surfaces using univariate geo-statistical technique. Moreover, for determining optimal number of zones, clustering 
performance was measured using Fuzzy Performance Index (FPI) and Normalized Classification Entropy (NCE) indices. The 
results revealed that soil ECa, nutrient rate and crop yield information could be quantified and aggregated using CA that 
characterize spatial variability among soil and crop productivity. © 2012 Friends Science Publishers 
 
Key Words: Customized management zones; Principal component analysis; Spatial variability; Crop yield modelling; Fuzzy 
C-Means; Fuzzy performance index and Normalized classification entropy  
 
INTRODUCTION 
 

Precision Farming (PF) have proven track in the 
development of new technologies that have potential to 
increase farm yield at reduced agricultural inputs and 
environmental damage. Recent research in PF has focused 
on use of MZs as a method for variable application of 
inputs. MZs represent a homogeneous combination of 
potential productivity-limiting factors, which are therefore 
permanent (Fridgen et al., 2000a) and refer to geographic 
regions that present topography, crop and soil attributes with 
minimal heterogeneity (Luchiari Jr. et al., 2000). The 
determination of homogeneous areas within a field is 
difficult to achieve due to the complex combination among 
factors which may influence yield (Jose & de Cesar, 2008). 
Clustering soil and yield data give a starting point to analyse 
the causes of yield variability and can be a basis for defining 
MZs (Vrindts et al., 2003). Lot of research recently has been 
directed and evolving towards evaluating different 
techniques, algorithms, procedures, use of data layers, use of 
significant variables, for identifying precise MZs. This 
includes: use of single or multiple data layers such as ECa, 
crop yield, topographic features (slope & elevation), nutrient 
levels, and remotely sensed images, data analysis 
procedures and methods includes: Fuzzy c-means (FCM), 

spatially contiguous K-means (SCKM), Geo-spatial and 
statistical techniques, kriged soil test point data, 
consideration of farmers knowledge, coefficient of variation 
of data layer, rasch model and PCA (Fridgen et al., 2000b; 
Moral et al., 2011). These computational techniques are 
used either alone or in combination. Further, since maps of 
soil physical properties (clay content), cation exchange 
capacity (CEC), organic matter, and yield show visible 
correlation with ECa, use of ECa as an indirect measure of 
soil physico-chemical properties is considered as a rapid and 
inexpensive tool for PF (Williams & Hoey, 1987; McBride 
et al., 1990; McNeill, 1992; Jaynes et al., 1994; Rhoades et 
al., 1999). These correlated properties have a significant 
effect on water and nutrient-holding capacity, drivers of 
crop yield, and hence can be used for delineating 
productivity zones for claypan soils (Jaynes et al., 1995; 
Kitchen et al., 2005). Determining the proper amount of 
nitrogen (N) to be applied to an agricultural field is a source 
of debate and discussion among growers, input suppliers, 
and researchers due to its serious environmental and 
economic concerns. With blanket N-rate there are typical 
areas within a field, which are over- or under-dosed. The 
usefulness of soil EC in PF is because it correlates well with 
soil texture: sands have a low conductivity, silts have a 
medium conductivity and clays have a high conductivity 
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(Lund et al., 2001), and influences N movement through it. 
Lund et al. (2001) have presented three case studies to 
determine the proper amount of nitrogen to be applied to an 
agricultural field by assessing N-availability and its 
efficiency using ECa measurement. Laboratory studies in the 
earlier reported works have shown that soil nutrients directly 
affect the electrical conductivity of the isolated soil solution 
(Ouyang et al., 1998) therefore, it is reasonable to assume 
that ECa could be used to measure the available nutrient 
content of the soil, eliminating the need for time-consuming 
and expensive soil sample acquisition and analysis 
(Heiniger et al., 2003). 

The present investigation deals with the assessment of 
relation between soil ECa with crop yield response to 
interpret spatial variability. Further to delineate intra filed 
zones based on the soil ECa, which would facilitate site-
specific Customised Management Practices (CMP) enabling 
variable rate of soil input application. The Unscrambler 
software version 10.0 was used to investigate the 
relationship between conductivity and yield data. The 
interpretation of the field-scale measured ECa data have 
been performed by PCA based scatter plots and hierarchical 
cluster (HCA) and FCM analysis. The specific objectives of 
this study were to: (i) identify variable N-rate and ECa 
relation (ii) investigate the specific relationship between 
yield spatial variability and ECa spatial variability (iii) 
Assess cluster performance by computing FPI and NCE to 
validate optimal number of zones. 
 
MATERIALS AND METHODS 
 

Modern on-the-go mapping technology of field-scale 
ECa information was combined with traditional data 
collection (soil sample analysis & crop yield observations). 
The combination of ECa, applied nutrients, soil and crop 
yield information was expected to give better insight to 
spatial and temporal variation in the field, leading to design 
site-specific input management scheme of the field. 
Field survey and data collection: DGPS based survey data 
of soil ECa were collected from three experimental fields, 
which were monitored under PF studies, located at Punjab 
Agricultural University (PAU), Ludhiana, INDIA. No-
tillage system was practiced under paddy cultivation, during 
the summer cropping seasons and harvested in the month of 
May 2010. The soil type in this area is classified under 
tropical arid brown soil. A systematic study using field-scale 
soil ECa measurements was conducted to assess the soil 
quality and from the site-specific crop management 
perspective, which includes following steps: (i) Establishing 
site/field boundaries, (ii) recording site metadata, (iii) 
collecting Trimble DGPS coordinate system, (iv) 
establishing ECa measurement intensity, (v) geo-referencing 
site boundaries and significant physical geographic features 
with DGPS, (vi) measuring ECa after completing necessary 
calibration and compensation process of geonics 
EM38MK2 field-usable geo-sensor, (vii) designing of 

sampling strategy based on geo-referenced ECa data, (viii) 
soil sampling at specified sites designated by the sample 
design, (ix) lab analysis for the determination of soil 
properties, and (x) spatial and geo-spatial analysis to 
interpret ECa with respect to crop yield and soil properties. 

Sensor measured soil properties and manually 
measured yield data were collected from field 1, on field 
scale basis prior to harvesting. The fields were cultivated 
with paddy varieties such as V1=PBW 343, V2=PBW 550 
and V3= DBW 17. During normal crop cycle, nitrogen 
fertiliser was applied in variable rates: N1, N2, N3, N4 and 
N5, with average dose of 0, 75, 125, 175, and 225 kg 
nitrogen/ha. The normal crop protection measures were 
taken, including herbicides and fungicides. The field scale 
data collection was done using geonics EM38MK2 
conductivity meter and geo-referenced with Trimble DGPS. 
EM38MK2 is a portable device weighing about 3 kg and 
was pulled through the field by the operator using wooden 
trolley. The sensor was positioned at about three inches 
above the ground surface providing continuous ECa data 
logging. It comprises of receiver and transmitter coil placed 
apart and electrically insulated from each other, transmitter 
coil induces changing field and produces eddy currents in 
the soil and secondary coil in turn generates “EMF” 
proportional to soil conductivity caused by soil eddy 
currents. EM38MK2 measures simultaneously both the 
quad-phase (apparent conductivity) and in-phase 
(susceptibility) components, within two distinct depth 
ranges, to a maximum effective depth of 1.5 m. It consists 
of  two receiver coils, each in the vertical dipole orientation, 
separated by 1 m and 0.5 m from transmitter, 
simultaneously providing data at two depths, providing both 
shallow (0-0.75 m) and deep readings (0-1.5 m). This 
portable meter combines performance of all previous EM38 
models and has features such as Bluetooth for wireless data 
transmission, extended battery life, automated field scale 
calibration etc., which provides more soil information in less 
time. 

On-the-go, geo-referenced ECa data for each field 
were collected using specially developed trolley free from 
any EM interferences since it was built from wood, a low 
induction number material. Other data logger system 
component consisting of DGPS were attached to this 
wooden trolley set-up for real time geo-referencing of ECa 
measurements. The variance observed in the field-scale 
measured data for soil spatial variability is given in Table I. 
Experimental field organization: Field1 was divided into 
three different parts (part1, part2 & part3) each having grid 
matrix structure of 3(columns) by 5(rows) totalling 15 grid 
cells in each part and each grid cell had dimensions of 6 m 
X 5 m. Field2 was divided into 4 by 5 grids, each cell 
having dimensions of 9 m X 9 m creating 30 points for 
measurement. Field3 was divided into 11 by 1 grids, each 
cell having dimensions of 9 m X 9 m creating 24 points for 
measurement. Experimental field organization for field 1, 2 
and 3 are shown as below [Fig. 1 (a), (b) and (c)]. 
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Soil sampling scheme using ESAP: After collection of 
field scale data, ECa directed soil sampling was done using 
ESAP-RSSD (Response Surface Sampling Design 
software), a multi-program, statistical software package 
designed and distributed by the Salinity Laboratory, USA 
for optimizing: the sampling location and assessment, and 
prediction of soil salinity and related variables. Using this 
software, signal de-correlation was performed over the data; 
outliers were seen and removed by running signal validation 
module. After signal validation, configuration of data was 
further accepted based on RSSD algorithm; sampling design 
was created with different adjustment factors for the given 
samples to meet the optimality criteria (< 1.3). Resultant 
sample design footprint obtained was saved in .txt and .jpg 
format. Finally, optimal ECa directed soil sample design was 
produced for each field. Twelve sampling points for each 
part of field1 and twenty sampling points for field2 were 
designed. 
Soil sample collection: The sampling locations obtained 
from ESAP software were converted to DGPS compatible 
file so that the locations could be traced in the field. The 
sample design footprints obtained from ESAP were 
converted to DGPS waypoint file using DGPS pathfinder 
software. Also, the waypoint file was sent to DGPS device 
using data transfer option of the DGPS pathfinder software. 
After transferring waypoint file to DGPS, field was 
navigated and marked for different sampling locations 
within the field. At the designated sites, soil samples at 1feet 
and 2 feet depth were collected using manual core sampler. 
The soil samples were packed in air tight plastic bags and 
were labelled according to geo-referenced site details. 
Finally, soil samples were dried under shade, before  
sending to soil testing laboratory of PAU, Ludhiana (India) 
to determine their physico-chemical properties such as 
moisture, pH, real dielectric (Electrical Conductivity), 
Organic matter, clay and temperature. The data were 
divided into two groups: one with the information about 
parameters such as temperature, moisture, pH, real dielectric 
and apparent electrical conductivity (ECa) and second group 
with the crop yield along with their longitude and latitude 
information. 
Data analysis: After data collection, statistical and geo-
statistical analysis was carried out to find correlations 
between ECa, crop yield, N-rate and physico-chemical soil 
attributes. It includes: regression analysis, scatter plot 
analysis between ECa and yield to check pattern matching, 
variability analysis using PCA and ECa and yield data to 
find significant Principle Components (PCs) representing 
spatial variations and then applying FCM on significant PCs 
in MATLAB to delineate MZs. Finally to visualize spatial 
variations, kriging interpolation was applied by establishing 
appropriate theoretical semi-variogram models, firstly, for 
known sampled data and then for un-sampled locations. 
Statistical analysis software, UNSCRAMBLER 10.0 
version was used to carry out PCA, HCA and correlation 
studies. MATLAB software tool was used to perform 

classification as well as validation using FCM technique and 
FPI performance index respectively. ArcGIS 9.0 was used 
to display MZ’s. For post processing operation of DGPS 
data and sampling location tracing, Path Finder Office 4.10 
program was used. 
 
RESULTS AND DISCUSSION 
 
PCA and cluster analysis of ECa, crop yield and variable 
soil N-rate: The PCA scores plot was studied for ECa, Crop 
yield, and variable soil N-rate. The scores plot is a map of 
samples, which shows how they are distributed. It can be 
used to isolate samples that are similar, or dissimilar to each 
other. The following inferences were drawn in the present 
study. 
Inference 1: By using information about yield, ECa and 
variable N-rate applied in different parts of field, the 
following observations were derived (Fig. 2a & b): 
a) It is evident from PCA score plot that the properties of 
part1 and part3 show greater similarities as compared to that 
of part 2 since they lie close to each other in scores plot. 
b) It can also be studied from the correlation loading plot 
(Fig. 2b) that ECa measurements at two different inter-coil 
spacing configuration [vertical mode (CV) i.e. CV-0.5 m & 
CV-1.0 m] represents different regions of subsoil spatial 
variability. This may be of relevance, while understanding 
soil profile at different crop root zones, while deciding type 
of crop production. 
c) Part2 showed the highest yield, and ECa at 75 cm 
depth range (CV-0.5 m) has also shown increment in same 
direction. This is because values obtained for 0-75 cm depth 
range represent the region, which is mainly dominated by 
clayee sand, where EM fields are confined to show good 
conductivity in this region. 
d) In field1 grain yield was significantly linear with 
applied variable nutrient rate until it reached its threshold 
value of ‘N5’ rate. 

Above inferences were supported by PCA plot studies 
between geonics measured field scale variations represented 
by ECa and the yield information (Fig. 2a & b). 
Inference 2: The PCA plot  between the nitrogen rates 
applied and crop yield information for field1, helped in 
finding threshold values of nitrogen to be applied within 
individual parts of field1to ascertain maximum yield. This 
level of interpretation, with the currently available 
information, further enabled monitoring of variable nitrogen 
rate control for a specific crop and field location. Below are 
the point-wise observations noted for individual parts of 
field1 derived from spatial ECa variations through PCA 
analysis considering nutrients and crop yield variability. 
a) The crop yield was found to be increasing with 
the amount of nitrogen (Fig. 3a & b) in part1, but on 
increasing nutrient-rate beyond a specific threshold 
(N4), the crop yield has shown downward trend in this part. 
That means when the supply and the requirement match, 
any further increase in N-rate does not account for crop 
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yield productivity growth. Therefore, ECa based tracking of 
N-rate and yield trends through CA can help agronomist 
undertake customised nutrient management program on 
site-specific basis. 
b) A similar trend having increased crop yield with the 
increase in nutrient rate was again observed in part2, which 
continued till N5 nutrient rate of application. 

Similarly, crop yield increases with increase in amount 
of nitrogen rate in part3 and decreases after threshold of N4. 
Similar trend was observed in case of part1. 

Furthermore, on sample grouping with respect to crop 
varieties for all plots, crop varieties show similar effect for 
variable nutrient rate. One of the scatter plot analysis 
revealed similar results when plotted between yield versus 
ECa and observed with respect to applied nutrient rate 
grouping [(Fig. 3c & d) for part1] and [(Fig. 3e) for part2]. 
In these scatter plot analyzes, it was again clear that after N4 
rate, there is no proportionate increase in crop yield, 

indicating over dosage done by N5 rate, which could have 
been avoided saving fertilizers and cost. 

The scatter plot analysis indicated that for each 
variable nutrient rate, specific cluster of crop potential is 

Fig. 1: Arrangement of experimental field 1, 2 and 3 
 

 
Fig. 2a and b: PCA score and loading plot analysis 
using ECa and yield information with N- rate 
 

(a) 
 

(b)  
 

Fig. 3c, d and e: Scatter plot analysis of ECa and crop 
yield when observed for N-rate 
 

(c) 
 

 

(d) 

 
(e) 
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exhibited. These similar crop potential cluster movements 
can be easily tracked by the representative ECa mapping. 
While systematically monitoring ECa cluster movement, it 
was observed that nutrient rate management can become 
feasible approach using modern systems comprising of 
sensor measurements followed by software analysis (Fig. 
3c, d & e). 
Inference 3: In case of cluster analysis in field1 using ECa 
and yield data, it exhibits similar number of cluster 
distribution for crop yield variability (Fig. 4b) and ECa 
values considering measurements in the same regions 
(Fig. 4a). 

From HCA, it is evident that the segment of part1, 

part2 and part3 of field1 contributes major portions of 
cluster classes with a clear discrimination, while identifying 
the homogeneity within these parts. These different cluster 
zones, exhibit cohesion within them i.e., having similar soil 
properties thus, productivity potential and hence can be 
given a similar soil input treatment governed by site-specific 
CMP of interest. A summary of analysis of grid cells 
depicting matching of crop yield grids to that of ECa 
data clusters is shown in (Fig. 4c). However, it is visible that 
they are distributed in two distinct classes i.e., part 1 and 
part 3 as one class, whereas part 2 representing separate 
class. 

As a result of CA, it was attempted to depict matching 
of patterns at a glance, observed during data analysis of 
entire field (Fig. 4c). When zones are delineated by CA 
using geonics data and yield data, the red coloured grid cells 
exhibit best matching patterns in agreement. Similar results 
were observed by Stafford et al. (1998) using fuzzy 
clustering of combine yield monitor data to divide a field 
into potential MZs. This shows that majority of the grids fall 
into the homogenous zones and show matching patterns 
between ECa measurements explaining good percentage of 
associated yield variability, which is quite significant and 
encouraging. This pattern matching helps to interpret crop-
yield response, which then can govern specific variable soil 
input rate control depending on site specific crop yield 
productivity potential of interest. 

Thus, it was found that on-the-go; field-scale 
measured data of ECa has shown encouraging 
interpretations associated with site-specific crop yield 
patterns in some parts of the field and therefore, can be 
considered as a surrogate measurement for field-specific 
crop yield response predictions. 
Inference 4: The field scale measured ECa data were also 
studied to find variations in different zones based on the 
amount of nutrients applied. In total, five different quantities 
of nutrients namely N1, N2, N3, N4 and N5 were applied on 
the field1. It was attempted to determine the effect of 
nutrients on conductivity as well as yield response apart 
from classification of spatially different regions based on 
soil ECa variability. 

The PCA model of first variety of crop (V1), based on 
spatially geo-referenced ECa measurements has shown that 
nitrogen amounts of N1 and N3 have the highest 
conductivities and are creating clusters with respect to these 
specific nutrient rates applied. The scores plot has clearly 
shown the creation of clusters i.e., homogenous zones with 
respect to different nitrogen rates applied. This has been 
confirmed by the conductivity based scores plot (Fig. 5a & b). 

The PCA model, for second variety of crop (V2), 
based on ECa, has shown that nitrogen amount N2 has the 
highest conductivity. 

Similarly, PCA model for third variety of crop (V3) 
had shown that nitrogen amount N4 has the highest 
conductivity; the same is confirmed by plot. 

Fig. 4a and b: Spatial variability investigations with 
Hierarchical Cluster Analysis to observe matching 
classes between ECa and Crop yield data 
 
  (a)

 

 

(b) 
 

 
Fig. 4c: Matching patterns of ECa data with that of 
yield data in field1 
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While analysing PCA model for all three varieties, it 
was found that N5 has shown agreement with highest yield 
trend and it increases towards right hand side of loading plot 
in the vertical direction. This analyzes helped to understand 
that ECa based measurements are able to distinguish five 
different clusters that were applied with five different N-
rates, resulting in five variations in crop yield. Besides 
above observations, scores plot has shown cluster 
formations in remaining cases of variable n-rates application 
over entire field. 

Referring graphical representation of PCA analysis, 
for all three varieties of paddy, based on spatial 
measurement of soil ECa data for two soil depths i.e., 0-75 
cm and 0-150 cm, it can be observed that each variable rate 
has separate cluster as shown in scores plot. It suggests that 
variable rate of nutrients can be classified, managed and 
monitored using bulk conductivity monitoring. While 
observing score plots for all three varieties, it was found that 
different clusters of conductivity belong to specific crop 
yield response, that means yield cluster have matching ECa 
response characteristics. Hence, variable soil input rate can 
be customised and monitored in conjunction with ECa 
measurements and cluster analysis. Further, it was analysed 
that increase in input rate such as N4 and N5 has indicated 
distinct cluster patterns indicating highest crop yield 
irrespective of crop variety. 
Inference 5: The geonics measured ECa data were also used 
to differentiate amongst three fields in order to observe any 
natural clusters so as to treat and govern management zone 

with variable soil input rate control between fields. 
Following are the inferences drawn, when all fields were 
analysed altogether with PCA at once. 
a) Cluster formations have been observed for each field 
in the PCA scores plot. The observed clusters can be seen 
(Fig. 6a) that are differentiated by colouring scheme that 
corresponds to different fields as follows: 

Red: field1, Green: field2, Blue: field3. 
Sample grouping was carried out with respect to field 

ECa ranges; Principal Component (PC) 1 of measured data 
set explains 100% variance of the soil data in the selected 
fields. This knowledge of cluster formation was used to 
represent customized zones, which can be treated with 
specific soil input rates to produce bio-eco farming returns. 
It was also seen through lab analyzed data that field 1 and 
field 2, which are close to each other in scores plot are 
having nearly similar soil texture characteristics compared 
to field 3, which is clearly discriminated as a separate 
cluster. 
b) In Fig. 6a, it has been observed that the properties of 
field 1 and field 2 are similar to some extent as compared to 
that of field 3 cluster. 
c) The study of loadings plot (Fig. 6b) reveals that 
conductivities measured at two depths lie on the outer 
ellipse and hence is responsible to explain maximum 
variance of the field. But, they do not exhibit a strong 
positive correlation and are at two extreme ends with each 
other meaning that they represent two different sub-soil 
spatial variability at two different depths covering different 
sub-soil volumes, hence it becomes necessary to measure 
the conductivities at both the depths to investigate soil depth 
characterization at two depths covering different volumes 
and sub-soil characteristics. The characterization of specific 
root-zone depth is of interest in case of crop-yield response 
studies, to understand crop specific rooting zone properties 
on a site-specific manner. 
d) A comparative study of scores plot and the loadings 
plot (Fig. 6a & b) explains that the significant soil attribute 
for describing the characteristics of field 1 and field 2 is 
apparent conductivity mapped for (0-150 cm) depth, while 
that of field 3 is conductivity for (0-75 cm) depth. This 
suggests that for field 3, the soil spatial variability is better 
explained and sub-soil spatial characteristic is positively 
correlated with ECa measurements for (0-75 cm) depth, 
whereas in case of fields 1 and 2, the conductivity 
measurements for (0-150 cm) is more meaningful to govern 
further investigations. 

It was also observed (Fig. 7) with the help of 
correlation loadings plot that conductivity measured for (0-
75) cm is significant in explaining the variabilty of crop 
yield as compared to ECa measured for (0-150) cm. 
Analysis of correlation and different clustering 
techniques for delineation of MZs: The correlation 
between soil ECa and physico-chemical properties of the 
soil was evaluated based on spatial variability surface maps 
generated using kriging and co-kriging interpolation (Fig. 8). 

Fig. 5a and b: PCA analysis of ECa, nutrient rate and 
yield for crop variety V1 
 

(a) 
 

 

(b) 
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Strong correlations were identified after analyzing the 
relation between measured EC and soil attributes (Table II). 

These interactions and intricacies amongst the various 
soil attributes are limiting factors for the use of simple 
correlation analysis in the interpretation of these data with 
respect to crop yield. Therefore, PCA, a dimensionality 
reduction technique without loss of relevant information, 
was then used to reduce the number of variables and to 
generate MZs. By applying PCA, scores were obtained that 
are projection of actual data on PC vector space. Variance 
values of each PC are shown in Table III. Significant PCs 
were selected among the total set of original variables which 
together explained 93.93% of the total cumulative variance 
of those data. 

Both the data groups were separately clustered with 
fuzzy-c means algorithm. The integrated script of PCA and 
Fuzzy c-means written in MATLAB program produces the 
results (Figs. 9 & 10), where it shows delineated zones of 
ECa and yield having  matching pattern. 

In order to delineate precise MZs, optimal number of 
clusters using fuzzy clustering process was obtained and 
verified using fuzzy performance index (FPI) and 
normalized classification entropy (NCE). The process was 
carried out for both conductivity and yield data (Figs. 11 & 
12, respectively). 

Fig. 6a and b: PCA analysis for combined three fields 
to observe classification of zones based on ECa 
 

(a) 
 

 

(b) 
 

 
Fig. 7: Correlation loading plot to study ECa measured 
at different depths with Crop yield 
 

Fig. 8: Geo-spatial variability of (a) soil Electrical 
conductivity (b) other physiochemical properties 
 

(a) 
 

 

(b) 
 

 
 

Fig. 9: ECa delineated zones 
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The optimal number of clusters for each computed 
index was observed when the index is at the minimum, 
representing the least membership sharing (FPI) or greatest 
amount of organization (NCE) as a result of the clustering 
process. The minimum FPI and NCE were obtained with 
two clusters for the present study area, which is also 
coincident with other analysis in this area discussed earlier 
including HCA. The successful validation by FPI and CE 
indices implies least membership sharing and greatest 
amount of organization therefore, demonstrating distinct 
classes or MZs. 

Many researchers use yield maps for generating 
productivity MZs. However, it has been debated time and 
again that it involves considerable time and expense and the 
cropping inputs necessary to optimize productivity and 
minimize environmental impacts which can be derived only 
if factors contributing to the observed spatial crop patterns is 
known. Yield maps alone do not provide this information 
nor do they by themselves provide the information 
necessary to differentiate edaphic, anthropogenic, biological 
and meteorological factors influencing crop yield and spatial 
crop patterns. Also yield monitors have not been developed 
for all crop varieties and it needs appropriate calibration 

Table I: Descriptive Statistics of geo-sensed, field scale measured ECa 
 
Statistics Soil Information Mean Max Min Range SD Variance RMS Median 
 
 
 
FIELD1 

CV-1.0m (Eca for 0-150cm) 23.45255 27.583 20.943 6.639999 1.841426 3.390848 23.52313 23.169 
CV-0.5m (Eca for 0-75cm) 31.22414 231.44 19.248 212.192 43.4697 1889.615 53.12786 21.904 

Grainyield 1431.17 2282.5 345.344 1937.156 586.1918 343620.8 1544.096 1551.348
Bioyield 3318.218 5217.93 836 4381.93 1273.822 1622622 3549.243 3483.11 

 
FIELD2 

CV-1.0m (Eca for 0-150cm) 18.12677 23.894 14.128 9.765999 2.097522 4.3996 18.24748 17.996 
CV-0.5m (Eca for 0-75cm) 12.27878 16.733 7.436 9.297 1.928088 3.717523 12.42916 12.358 

 
FIELD3 

CV-1.0m (Eca for 0-150cm) 15.88289 19.786 11.193 8.592999 1.654272 2.736615 15.9687 16.193 
CV-0.5m (Eca for 0-75cm) 62.60425 66.713 56.517 10.196 1.543256 2.381638 62.62354 63.002 

 
Table II: Fitness Measures Statistics of EC and physiochemical soil properties and yield 
 
EC-Relation R-square RMSEC RMSEP SEC SEP Correlation 
Moisture 0.937595 0.000828 0.000856 0.000834 0.000862 0.968295 
Temperature 0.034019 0.003257 0.003415 0.003280 0.003439 0.184443 
Real Dielectric 0.947069 0.000763 0.000780 0.000768 0.000786 0.973175 
pH 0.002080 0.003311 0.003400 0.003334 0.003424 0.045603 
Organic Matter 0.566271 0.006381 0.006427 0.006397 0.006429 0.75251 
Clay 0.479334 0.008472 0.008618 0.008571 0.008614 0.69234 
Yield 0.506118 0.006287 0.006318 0.006275 0.006348 0.71142 

Table III: Principal component vs. Cumulative 
Variance 
 
Principle Component                            Variance Cumulative 
1                                                                  0.6612 
1-2                                                               0.9393 
1-3                                                               1.0000 
1-4                                                               1.0000 
1-5                                                               1.0000 
 
Fig. 10: Yield delineated zones 
 

Fig. 11: FPI and CE indices of conductivity 
 

 
Fig. 12: FPI and CE indices of Yield 
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compensations in case of real-time monitoring, which are 
highly subjective. In contrast, ECa is an easy-to obtain, rapid 
and low-cost method of soil and landscape measurements to 
provide productivity MZs. In order to test whether 
customized management zones (CMZs) from easily 
obtained ECa would be similar to those created from the 
more difficult, time-consuming and expensive yield-mapped 
data, clusters identifying spatial patterns of yield and 
conductivity were plotted along with respective location co-
ordinates (Figs. 13 & 14). 

A visual inspection of these maps indicated a good 
agreement between both. This relationship between ECa and 
yield was previously reported by Lund et al. (2000). 

It can be observed from overlapped results (Fig. 15) 
that clusters of yield and conductivity are matching, which 
indicated that yield interpretations can be made from easily 
obtained ECa measurements and thus, can be used to create 
CMZs to govern variable soil input rates. This verifies the 
utility of ECa in identifying the areas within field that 
correspond to homogeneous soil fertility zones. It can also 
be implied that directed soil sampling can be undertaken, 
depending upon desired farming guidance and/or agronomic 
resource application. Based on the studies for another 2-3 
cycles from the same field, development of within field 
micro-management zones can be established in order to 
provide optimal amount of targeted soil input rates. This 
type of customized rational soil input treatment approach 
results in ensuring safe food chain supply system, which is 
free from excess fertilization imbalances and can generate 
stable inroads to country’s economic development owing to 
fertilizer being core industry influencing GDP seriously, 
apart from protecting natural infrastructure for the survival 
of mankind as well as micro-organisms. 

Further, to visualize homogeneity among the clusters, 
they were imported to ArcCatalog and later to Arc map. 
Kriging was applied on these clusters and exponential 
semivariogram model (Lags=7, Neighbours=5) was built 
and thus, delineated MZs were designed for each field 
(Fig. 16). The point with the same color (i.e., cluster) lies in 
the single MZs. Only the overlapping clusters are distributed 
in the various MZs as they share the properties of both 
clusters. Krigged and co-krigged based interpolated spatial 
maps were generated after selecting appropriate 
neighbourhood criteria, cross validation, variogram model, 
using different arc map and geostatistical options of ArcInfo 
program (ESRI ArcGIS software). 

While creating geospatial maps, prediction equations 
were used to generate surfaces for unknown values using 
known ones, and standard error estimations were also 
computed. In this process, various parameters such as 
nugget, sill, lag size, standard errors were noted (Table IV). 

Further, scatter plots and groupings of variables are 
becoming increasingly common for PF service providers to 
observe similarity and regression correlation within paired 
data. When this is applied to geo-referenced ECa and yield 
data sets and plotted with respect to latitude and longitude, 

resulted producing typical matching patterns (Fig. 17). 
 
CONCLUSION 
 

The present paper demonstrated how modern 
techniques such as PCA, Fuzzy c-means and HCA  could 
effectively be used to group correlated and similar soil 
properties representative i.e., ECa into unique groups, for 
applying variable soil input rates using site-specific footprint 

Fig. 13: Yield clusters along with latitude and longitude 
 

 
 
Fig. 14: Conductivity clusters along with latitude and 
longitude 
 

 
Fig. 15: Yield and conductivity overlapped clusters 
along with latitude and longitude 
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which uses customized zone based management principles. 
This helps to interpret/predict crop yield response owing to 
spatial variations, and apply improved as well as optimal 
management practices for sustainability and bio-eco returns. 
The application of PCA and other clustering techniques in 
the present studies have identified matching patterns 
between geonics measured ECa data and associated crop 
yield variations. Moreover, ECa information of soil was 
analysed for soil variability with respect to variable nutrient 
rates applied in the experimental field of PAU, Ludhiana, 
India. It can be concluded that the soil spatial variations 
measured in terms of ECa can be termed as a surrogate 
indicator of sub-soil spatial variability that affects crop yield 
variations and hence can be employed in conjunction with 
cluster and PCA techniques to govern customized soil input 
rate management practices. In present studies, variable 
nutrient rates applied over entire field1 was also correlated 

with measured ECa through clustering technique and PCA 
score plots for a specific location and depth. In one of the 
studies, ECa, crop bio/grain yield data were analysed with 
regression technique and results have indicated that specific 
field characteristics are required to be taken into 
consideration, while developing site-specific calibration 
equation for a parameter of interest. It was also observed in 
the reported procedure that there is no limitation on number 
of properties to be considered, while delineating zones, as 
both, PCA and clustering techniques work on 
multidimensional data, which otherwise is the limiting 
factor in other spatial variability analysis methods such as 
krigging and co-krigging etc. It was seen that different CA 
techniques have produced similar results while delineating 
MZs. Such chemometric techniques in the field of PF have a 
long way to go in order to ensure sustainable agriculture, 
improving quality of life of farmers, and ever continuing 
growth. 
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