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Abstract 
 

Cuticular waxes are the hydrocarbon consisting of very long chain primary alcohols, aldehydes, fatty acids, alkane and esters. 

They are hydrophobic layer which protect aerial plant organs and help plant species for adaptation in different environments. 

Wax deposition and chemical composition vary considerably among crop species. Cuticular waxes play a significant role 

against major abiotic stresses in plants such as drought, high salinity and cold. So, it draws close attention to molecular 

processes of cuticular wax biosynthesis under stress factors. Here, we briefly summarized to the existing knowledge on the 

cuticular waxes properties, diversity, morphological changes in leaf surface wax crystals and amount and composition of 

cuticular waxes. We also provide information about wax biosynthesis genes in crops. Recently, due to progress of plant 

genome sequence, numerous genes involved in biosynthesis of cuticular waxes have been characterized both for model plant 

(Arabidopsis) and crops such as rapeseed (Brassica napus), Camelina spp, potato (Solanum tuberosum), eggplant (S. 

macrocarpon), tomato (S. lycopersicum), barley (Hordeum vulgare), rice (Oryza sativa), maize (Zea mays), wheat (Triticum 

astivum), broccoli (B. olericea), sesame (Sesamum indicum), tobacco (Nicotiana tabacum), cucumber (Cucumis sativus), 

cabbage (B. oleracea) etc. Basic compositions of cuticular wax are alcohols, branched alkanes, alkenes, aldehydes, fatty acids, 

esters, ketones, triterpenoids and sterols in crops. However, they vary from one crop species to the other. Cuticular wax 

biosynthesis is organ-specific and depends upon developmental stages of crops, and induced by environmental stimuli. The 

genetic factors also control wax biosynthesis and composition. However, cuticular wax also acts as a photoprotector layer 

during photosynthesis and protect from UV light radiation. It is also linked to gas exchange and plant development. In this 

review, we have summarized the cuticular wax amounts and contents in different organs, and genes to be involved in cuicular 

wax biosynthesis in several crops. This knowledge may be helpful in potential applications for selection of crop for 

agricultural sustainability. © 2019 Friends Science Publishers 
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Introduction 
 

In growth and development stages, plants have to face 

enormous environmental stresses like drought, salinity, cold, 

heat, UV light, high radiation, insect or fungal and 

pathogens. The cuticular waxes are a surface layer of the 

plant which provide defense against pests and pathogens 

(Wink, 1988; Holmes and Keiller, 2002; Bargel et al., 2004; 

Yeats and Rose, 2013). The cuticle is composed of two 

distinct layers which chemically separate compounds 

including a lipophilic cutin polymer matrix and waxes 

(Holloway, 1982; Jeffree, 1996; Kunst et al., 2005). 

Cuticular waxes are most important elements which prevent 

uncontrolled evaporation of water at the leaves surfaces 

(Jetter and Riederer, 2000; Knoche et al., 2000). The 

cuticular wax is composed of very long-chain fatty acid 

compounds (VLCFAs; C20 to C34). These VLCFAs 

compounds consist of Branched alkanes, primary alcohols, 

alkenes, aldehydes, secondary alcohols, β- and OH-β-

diketones, esters and often triterpenoids and flavonoids 

(Jetter et al., 2006; Samuels et al., 2008). The genetic and 

environmental factors influence on the deposition and 

composition of cuticular waxes (Bianchi, 1995; Post-

Beittenmiller, 1996). Cuticular wax biosynthetic pathways 

have been studied extensively in Arabidopsis (Hannoufa et 

al., 1993; McNevin et al., 1993; Jenks et al., 1995; Suh et 

al., 2005; Kunst and Samuels, 2009; Nawrath et al., 2013). 

Several cuticular waxes genes from Arabidopsis were 

identified such as FATB, LCAS1, LACS2, LCAS4, ACC1, 

KCS1, KCS2/DAISY, KCS6/CER6/CUT1, KCS9, KCS20, 

KCR1, HCD/PAS2, ECR/ECR10, CER2, CER2-LIKE1, 

CER2-LIKE2, CER1, RST1, CYTB5-B, CYTB5-C, CYTB-D, 

CYTB5-E, MAH1, FAR3/CER4 and WSD1 (Lee and Suh, 

2015). Number of cuticular wax genes has already been 

identified in crops (Table 1). Transcription, mRNA and 

post-translational modification are controlled by these genes 

in waxy and waxless plants (Von Wettstein-Knowles, 1995; 

Pu et al., 2013; Lee et al., 2015). However, genetic 

mechanism related to deposition of cuticular waxes in crops 

is still elusive and subject to further investigations. 
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Cuticular wax composition also depends on leaf color, 

insect-plant interaction and plant development. The 

quantity of plant cuticular wax largely depends upon 

environment conditions. Researchers have great interest 

to comprehend the detail genetic behavior of wax 

biosynthesis genes in crops. In this review, we 

summarized the amount and contents of cuticular waxes 

in the different crops and focused on recent progress 

about the molecular and biological function of genes 

engaged in biosynthesis of cuticular wax. We also briefly 

discussed the properties and diversities of cuticular waxes. 

 

Properties of Cuticular Wax 

 

Plant response and adaptation to abiotic and biotic 

stresses: Plant transpiration depends on two factors. 

Basically plant transpiration take place through stomata and 

a non-stomatal component is also there. Bernard and Joubès 

(2013) reported that there is significance correlation 

between the lipid cuticle layer and transpiration which was 

first proof about the role of cuticle for non-stomatal water 

loss (Stiles, 1994). Stomata remains close during water 

stress or night time, and provide space for significant 

cuticule transpiration. Several plant studies such as on 

tobacco and sesame also showed that wax biosynthesis was 

increased during water stress, and played an important role 

in preventing the cuticuler desiccation (Cameron et al., 

2006; Kim et al., 2007). In Arabidopsis, water and osmotic 

stresses increased wax deposition that in turn were 

associated with a resistance to water stress, and cuticle 

formation could be a part of mechanism to acquire tolerance 

to water stress (Kosma et al., 2009). Amount of wax and 

resistance to water flow depends on the cuticle biosynthesis 

enzymes (Aharoni et al., 2004; Bourdenx et al., 2011; Seo 

et al., 2011). The regulation of cuticle permeability mainly 

depends on the wax deposition mechanisms during water 

stress. Several studies have reported that increase in cuticle 

permeability reduces wax load and vice versa (Chen et al., 

2003; Zhang et al., 2005; Kosma et al., 2009; Lü et al., 

2009, 2012; Bourdenx et al., 2011; Seo et al., 2011). Higher 

cuticle permeability depends on increased amount of cutin 

and waxes depositions. 

Cuticular waxes need for plant development: Beside 

their major contribution to stress tolerance, cuticular waxes 

are active players in the growth and developmental 

processes in plant. Kurdyukov et al. (2006) reported that 

organ fusion phenotypes were frequently associated with 

severe imperfections in either cuticular wax or cutin 

biosynthesis, as noticed in, bodyguard, Wddlehead, 

cer3/wax2 and numerous other mutants. Other studies on 

Arabidopsis also indicated that lacs1lacs2 double-mutant 

plants demonstrated pleiotropic phenotypes such as organ 

fusion, unusual flower development and decreased seed set 

(Weng et al., 2010). The wax-deficient cer1 mutant of 

Arabidopsis had a conditional male-sterile phenotype that 

reduced pollen viability contributed to the low seed yield 

(Aarts et al., 1995). These studies indicated that a deficiency 

in cuticular waxes biosynthesis or cutin synthesis has a 

effects on cuticular barrier, water movement, defend against 

drought stress and protect organ fusion. Arabidopsis 

mutant’s analyses help us to understand of changes in 

cuticular waxes amount and composition during different 

developmental stages and add conception to the action of 

cuticular waxes in plant physiology. 

 

Diversity of Cuticular Wax 

 

Despite our relatively advanced understanding of wax 

compound structure and biosynthesis in Arabidopsis, crucial 

questions remain unanswered about how chemical 

composition determines the physical properties of the 

cuticular wax mixture. Before addressing these questions, a 

thorough understanding of the major dimensions of 

cuticular wax diversity is needed, in particular, the diversity 

in the chemical structures and diversity in the waxes 

covering on different biological organs. It will move us 

closer to a fundamental understanding of the relationships 

between structure and function in the plant cuticular wax 

diversity. 

Structural diversities of wax compound: Structural 

diversity may be evident from the aliphatic tail (e.g., number 

of unsaturations, aliphatic branches, TCN, etc) or functional 

groups (e.g., number of functional groups, positions on the 

aliphatic tail, oxidation state, etc) in the wax molecules. 

Some of those compounds were found in large amount in 

different plants and crops, indicating that they play a vital 

role in the properties of cuticular waxes and alter cuticular 

wax mixture. Moreover, their biosynthesis mechanisms of 

converting branched wax precursors into branched wax 

compounds are still not clear. It is needed to characterize 

branched wax compounds biosynthesis pathway to remove 

uncertainty of model species. Fatty acids, primary alcohols, 

alkenes, wax esters, aldehydes and branched alkanes are 

major cuticular wax components. However, wax profiles in 

different plant organs also revealed that some plants 

accumulate secondary functional groups with major 

cuticular wax compounds (Gunthardt-Goerg, 1986; Wen et 

al., 2006). Ketones, ketoalcohols, and ketoaldehydes found 

on the surfaces of the fern Osmunda re-alias (Jetter and 

Riederer, 2000), while β-diketones are present on the 

surface of wheat and barley (Tulloch and Weenink, 1969; 

Jackson, 1971; Han-Avivi et al., 2016; Schneider et al., 

2016; Huang et al., 2017). It was proved that the true 

diversity of cuticular waxes presents in different plants. 

Thus, our knowledge about branched wax compound and 

biosynthesis is still nascent stage. 

Biological variability in wax coverage and composition: 

Aerial plant organs are covered with waxes throughout their 

developmental stages. The quantity and composition of wax 

in plants depend upon the stresses in an age-dependent 

manner. Indeed, previous studies had reported that wax 

amount and compositions vary between plant surfaces of 
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different ages (Atkin and Hamilton, 1950; Gülz et al., 1992; 

Viougeas et al., 1995). Largely, the understanding of 

cuticular wax deposition on plant surfaces needs further 

studies (Suh et al., 2005). Plant surface development 

depends on cuticular wax deposition at different 

environmental conditions. It is needed to investigate the 

dimensions of biological variability and its relationship 

with the developmental biology of the plants. Thus, 

Cuticular waxes display structural diversity in their 

aliphatic tails and functional group (s) and biological 

variability depending on surfaces of different species, 

surfaces of different plant organs, and organ surfaces at 

different ages. 

 

Table 1: Genes known to be involved in cuticular wax biosynthesis in crop species 
 

Mechanism Species Organs Protein family name Abbreviation Reference 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

Cuticular wax 
biosynthesis 

 

 

 
 

 

Maize 

Seedling 

leaf 

Arabidopsis KCS6 homolog GL4 Avato et al., 1987; Liu et al., 2009 

Seedling 

leaf 

Arabidopsis KCR homolog GL8a Xu et al., 1997; Dietrich et al., 2005 

Seedling 
leaf 

Arabidopsis KCR homolog GL8b Dietrich et al., 2005 

Seedling 

leaf 

Arabidopsis CER3 homolog GL1 Hansen et al., 1997; Sturaro et al., 2005 

Seedling 

leaf 

Arabidopsis CER2 homolog GL2 Lemieux, 1996; Velasco et al., 2002 

 
 

 

 
 

 

 

 

 

Rice 

Leaf KCS WSL1 Yu et al., 2008 
Shoot KCS ONI1 Ito et al., 2011 

Anther Arabidopsis CER1 homolog WDA1 Jung et al., 2006 

Leaf Arabidopsis CER1 homolog OsGL1-6 Zhou et al., 2013 
Leaf Arabidopsis CER3, maize GL1 homolog OsGL1-2 Islam et al., 2009 

Leaf Arabidopsis CER3 homolog OsGL1-1/WSL2 Qin et al., 2011; Mao et al., 2012 

Leaf AMP-binding domin contained DWA1 Zhu and Xiong, 2013 

Leaf Arabidopsis CER3 homolog/ Maize GL1 homolog OsGL1-3 Zhou et al., 2015 

Leaf A homolog of the MBOAT transferase family OsWS1 Xia et al., 2015 

Leaf NAD+/NADP+-dependent sterol dehydrogenase OsHSD1 Zhanget al., 2016 
Leaf KCR WSL3 Gan et al., 2016 

Leaf KCS WSL3 Hong-bing et al., 2017 

Leaf Arabidopsis CER6 homolog WSL4 Wang  et al., 2017 
 

Tomato 

Leaf  CER6-like KCS LeCER6 Vogg et al., 2004;  

Fruit Β-Amyrin synthesis SITTS1 Wang et al., 2011 

Fruit Oxidosqualene cyclase SITTS2 Wang et al., 2011 
 

B. napus 

Leaf Unknown BnaA.GL Pu et al., 2013 

Leaf lipid transfer proteins  BraLTP1 Liu et al., 2014 

Brassica rapa Leaf Arabidopsis CER2 homolog BrWax1 Zhang et al., 2013a 

 

 
 

C. sativa 

Leaf Arabidopsis KCS2 homolog CsKCS2  

 
Lee et al., 2014 

Leaf Arabidopsis KCS6 homolog CsKCS6 
Leaf Arabidopsis KCR 1 homolog CsKCR1-1 

Leaf Arabidopsis KCR 1 homolog CsKCR1-2 

Leaf Arabidopsis ECR homolog CsECR 
Leaf Arabidopsis KCS2 homolog CsMAH1 

Cucumber Leaf Arabidopsis WAX2 homolog CsWAX2 Wang et al., 2015a 

Leaf Arabidopsis CER1 homolog CsCER1 Wang et al., 2015b 
 

 
 

Cabbage 

leaf lipid transfer proteins BoLTP2  

 
 

Laila et al., 2017 

Leaf Arabidopsis CER3 homolog BoCER3 
Leaf Arabidopsis KCS1 homolog BoKCS1 

Leaf Arabidopsis KCR1homolog BoKCR1 

Leaf Arabidopsis LACS1 homolog BoLACS1 
Leaf alkane hydroxylase CYP96A15 BoMAH1 

Leaf Arabidopsis CER4 homolog BoFAR3  

Leaf Arabidopsis WSD1-like family BoWSD1 
 

 

 
Wheat 

Leaf Arabidopsis CER4-6 homolog W1W2 Zhang et al., 2013b 

Leaf CER1 and CER3 homologs W3 Zhang et al., 2015 
Leaf Arabidopsis CER4 homolog TaFAR1 Wang et al., 2015b 

Leaf Arabidopis CER4 homolog TaFAR5 Wang et al., 2015c 

Leaf Arabidopsis CER4 homolog TaFAR2, TaFAR3, TaFAR4, Wang et al., 2016 
Spike miRNA (MIRNA) W1-COE and / or W2-COE Huang et al., 2017 

Leaf Arabidopsis CER4 homolog  Ae.tFAR1,Ae.tFAR2, 
Ae.tFAR3,Ae.tFAR4, Ae.tFAR6 

Wang et al., 2017 

Leaf Arabidopsis CER4 homolog TaFAR6,TaFAR7, TaFAR8 Chai et al., 2018 

Barley Spike PKS (DMP), Hydrolase (DMH),CYP450 (DMC) Cer-cqu Hen-Avivi et al., 2016; Schneider et 

al., 2016 

Leaf Protein phosphatase 2C family protein Cer-b Zhou et al., 2017 

 

http://www.sciencedirect.com/science/article/pii/S0168945216300747
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Cuticular Wax Morphology 

 

The wax morphology was examined on both the adaxial and 

abaxial sides of leaf by scanning electron microscopy 

(SEM) to achieve insight into epicuticular wax crystals (Fig. 

1). Leaf blades were collected from D genome (Aegilops 

tauschii) at three plant development stages (seedling, 

heading and filling stages). Two forms of wax crystals: 

platelets and tubules (A–L Figs) were found in the wheat 

leaf. Barthlott (1998) classified the epicuticular waxes. 

Some platelets shape wax crystals were joined to their 

adjacent crystals making a dense network. The length of 

platelet shaped wax crystals was between 0.3 and 0.7 

m and height between 0.3 and 0.5 m. The platelet 

shaped wax crystals had irregular margins, and were 

present at different angles with respect to each other 

(Fig. 1 A–L). So, the wax morphology changed during 

their development stages. It is concluded that as the plant 

ages, the cuticular wax morphology changes on the leaf 

surface (Wang et al., 2015a). 

 
Cuticular Waxes in Crops 

 

Amounts and contents of cuticular waxes in crop: It is 

very well known that cuticular waxes deposition varies 

across crops and from organ to organ (Barthlott et al., 1998; 

Kosma et al., 2010; Buschhaus and Jetter, 2011; Bernard 

and Joubès, 2013). Cuticular wax contents were measured 

in different organs of Arabidopsis, rapeseed (Brassica 

napus), Camelina spp, potato (S. tuberosum), eggplant (S. 

macrocarpon), tomato (S. lycopersicum), barley (Hordeum 

vulgare), maize (Zea mays), rice (Oryza sativa), wheat 

(Triticum astivum), broccoli (B. olericea), sesame 

(Sesamum indicum), tobacco (Nicotianatabacum), 

cucumber (Cucumis sativus) and cabbage (B. oleracea) 

(Table 2). Previous studies have shown that in Arabidopsis 

ecotype Columbia-0, the wax was 0.7–1.5, 13–24, 13 

μg/cm
2 
in leaves, stems and siliques, while it was 23-82 and 

36–170 μg/g in flowers and seed coat, respectively. Alkane 

contributed up to 50% of total wax loads and represented 

the most dominant wax compound in all organs of 

Arabidopsis. In stems, silique walls, flowers, and seed coats, 

secondary alcohols and ketones were present but their very 

low amounts was noticed on leaf (Jenks et al., 1995; 

Bernard and Joubès, 2013; Lee and Shu, 2015). 

In rapeseed, cuticular wax amount in leaves is 

considerably higher than Arabidopsis leaves, while other 

wax compounds were similar (Pu et al., 2013). In rapeseed 

breeding line 6-3476, the amount of wax in leaves (687–

2255 µg/g) was similar to flower of Arabidopsis (2382 

µg/g) (Tassone et al., 2016). In camelina sativum var 

Celina, the amount of wax in leaves, stem, flower and 

seed coat was 6.24, 164, 264, 0.24 µg/cm
2
, respectively. 

Wax esters (74%) in leaf and triterpenoids/sterols (53%) 

in stems were observed, but the primary alcohols (65%) 

were detected in seed coats (Razeq et al., 2014). 

Furthermore, in leaf of Camelina MYB96 transgenic line, 

the amount of wax was 2.9 μg/cm
2
 while in the leaf of 

Robinson variety it was 0.72 μg/cm
2
 (Tomasi et al., 2017). 

In another report, the wax compositions of cultivar C. 

sativum var Celina was similar to that reported by Razeq et 

al. (2014). Furthermore, the amount and composition in 

leaves of C. sativa 1.37 μg/cm
2
, C. rumelica 2.01 μg/cm

2
, C. 

hispida 0.85 μg/cm
2
 and C. microcarpa 0.84 μg/cm

2
 were 

reported but total wax loads were lower than younger 

leaves. In all Camelina species, the primary alcohols and 

alkanes were dominant components followed by wax esters, 

fatty acids and aldehydes. Interestingly, C. sativa var 

MYB96 synthesized higher levels of primary alcohols. It 

indicates that MYB96 might be an effective gene 

involved in the primary alcohols biosynthesis (Tomasi et 

al., 2017). In potato, the amount of wax in the leaves was 

5 μg/cm
2
 in Perkoz, 6 μg/cm

2
 in Aster and Maryna, and 7 

μg/cm
2
 in Ibis. Alkanes were dominant compound and 

primary alcohols were second major class in all potato 

varieties (Szafranek and Synak, 2006). In Gboma eggplant 

plant, the wax in cultivar UVPP was 2.7 μg/cm
2
 and in 

Urafiki it was 2.3 μg/cm
2
 were observed in leaves. Alkanes, 

primary alcohols, fatty acids, sterols, and triterpenols were 

also found. Alkanes (47–56%) were the dominant 

component in cuticular wax in Gboma Eggplant. Sterols 

content were observed much higher than triterpenes, 

consisting of 19 and 32% of the total waxes in Urafiki 

and UVPP cultivars, respectively (Halinski et al., 2012).   

 
 

Fig. 1: Epicuticular wax crystals patterns on the adaxial and 

abaxial leaf surfaces of the wheat D genome (A. tauschii) detected 

by SEM at three stages of plant development. A, D are the adaxial 

surface of leaves during seedling stage; B, E are the adaxial 

surface of leaves during heading stage; C, F are the adaxial 

surface of leaves during filling stage; G, J are the abaxial of leaves 

during seedling stage; H, K are the abaxial surface of leaves 

during seedling stage; I, L are the abaxial surface of leaves during 

Filling stage. The micrographs are at a resolution of 10,000× and 

30,000×, and the bars indicate 1 μm and 0.5 μm, respectively 

https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
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Table 2: Cuticular wax amounts and contents in different organs in crops 

 
Species Organs Total 

Loads 

Components (relatives %) Reference 

Fatty 
acids 

Aldeh

ydes 

Alkanes Primary 

alcohols 
Sec. 
alcohols 

Ketons Wax 
esters 

Iso- 
alkanes 

Anteiso
-

alkanes 

Alkenols Alkenes Triterpen
oids &  

sterols 

Ferulate 

Esters/

Phenol 

 

 

 
 

 

Arabidopsis 

Leaf 0.7–

1.5m 

1 14 73 8 0 0 4 0 0 0 0 0 0 Bernard and 

Joubès, 2013; 
Li-Beisson et 

al., 2013 

Stema 13–
24m 

1 7 44 12 9 22 5 0 0 0 0 0 0 Bernard and 
Joubès, 2013; 

Li-Beisson et 

al., 2013 

Siliquea 13m  1 4 50 14 9 22 0 0 0 0 0 0 Kim et al., 

2012 
Flowera 2382n 0 2 62 5 15 14 2 0 0 0 0 0 0 Bernard and 

Joubès, 2013 

Seed 
coata 

36–
170n 

0 9 51 13 18 9 0 0 0 0 0 0 0 Li et al. 2007; 

Bernard and  
Joubès, 2013 

 

Rapeseed 

Leaf 29.4m 1 4 55 2 10 27 2 0 0 0 0 0 0 Pu et al., 2013 

Leafb 687–

2255n 

0 0 0 0 0  0 0 0 0 0 0 0 Tassone et al.,  

2016 
 

C. sativa 

Leafc 6.2m 3 0 3 20 0 0 74 0 0 0 0 0 0  

Razeq et al., 

2014 

Steamc 16m 6 0 28 13 0 0 0 0 0 0 0 53 0 

Flowerc 264n 14 0 64 1 0 0 0 0 0 0 0 21 0 
Seed 

coatc 

0.2m 6 0 29 65 0 0 0 0 0 0 0 0 0 

C. sativa  Leafd 2.9 m 16 2 35 42 0 0 3 0 0 0 0 0 0  
 

Tomasi et al., 

2017 

C. sativa  Leafe 0.72m 9 0 9 49 0 0 17 0 0 0 0 0 0 

C. sativa  Leafc 0.83m 7 0 17 50 0 0 25 0 0 0 0 0  

C sativum leafc 1.37m 12 1 22 43 0 0 14 0 0 0 0 0 0 
C. rumelica Leaf 2.01m 6 1 35 40 0 0 17 0 0 0 0 0 0 

C. hispida Leaf 0.85m 7 0 20 27 0 0 40 0 0 0 0 0 0 

C. 
microcarpa 

Leaf 0.84m 4 0 45 44 0 0 0 0 0 0 0 0 0 

Potato Leaf f 6m 9 0 61 12 1 1 3 0 0 0 0 2 0  

Szafranek and 

Synak, 2006 

Leaf g 7m 9 0 65 10 0 1 5 0 0 0 0 1 0 

Leaf h 6m 10 0 61 11 1 2 2 0 0 0 0 1 0 

Leaf i 5m 5 0 61 7 1 2 2 0 0 0 0 1 0 

Egg Plant Leafj 2.7m 3 0 47 16 0 0 0 0 0 0 5 19 0 Halinski et al., 
2012 Leafk 2.3m 5 0 56 18 0 0 0 0 0 0 5 32 0 

 

 
 

 
 

 

 
Tomato 

Leafl 6.7m 0 0 74 3 0 0 0 18 0 0 0 5 0 Wang et al., 

2011 
Antherl 2155n 21 0 33 0 0 0 0 33 6 0 0 7 0 Smirnova et 

al., 2013 
Fruitm 8.4m 7 4 37 6 0 0 0 5 1 4 16 21 0 Isaacson et al., 

2009 

Fruitn 10.2m 3 2 49 6 0 0 0 2 0 5 9 24 0 Kosma et al., 
2010 

Leaf L1 2094n 2 0 72 1 0 0 0 0 0 0 0 10 0  

 
 

 

 
 

Halinski et al., 

2015 

LeafL2 2118n 1 0 75 1 0 0 0 0 0 0 0 7 0 
LeafL3 1686n 1 0 73 1 0 0 0 0 0 0 0 12 0 

LeafL4 1131n 4 0 73 2 0 0 0 0 0 0 0 7 0 

LeafL5 1019n 3 0 77 1 0 0 0 0 0 0 0 7 0 
LeafPen1 2351n 3 0 38 1 0 0 0 0 0 0 0 2 0 

Leaf Pen2 3933n 4 0 53 2 0 0 0 0 0 0 0 7 0 

Leaf Pen3 3738n 11 0 35 3 0 0 0 0 0 0 0 19 0 
Leaf Pen4 3971n 1 0 71 1 0 0 0 0 0 0 0 1 0 

Leaf Pen5 3116n 45 0 34 0 0 0 0 0 0 0 0 11 0 

LeafLxPen 2657n 1 0 62 1 0 0 0 0 0 0 0 4 0 
LeafPim1 1342n 1 0 71 2 0 0 0 0 0 0 0 5 0 

Leaf LxPim 1069n 2 0 71 1 0 0 0 0 0 0 0 5 0 

 
 

Barley 

Leafo 14.7m 9 4 1 75 0 0 11 0 0 0 0 0 0 Von Wettstein-

Knowles, 1971; 
Avato et al., 

1982 

Leafp 14.6m 2 1 1 6 0 59 0 0 0 0 0 0 0 Yu et al., 2008 

Table 2: Continued 
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In tomato cultivar Micro-Tom, amount and 

composition of cuticular waxes in leaf and anther were 6.7 

μg/cm
2
 and 2155 µg/g, respectively, and the most abundant 

components were alkanes (74%) in leaves (Wang et al., 

2011). Tomato cultivar M82 and cultivar Ailsa Craig in 

fruits contained 8.4 μg/cm
2
 and 10.2 μg/cm

2
 wax total load, 

respectively while alkanes and alkenes were the dominant 

wax component (Isaacson et al., 2009; Kosma et al., 2010). 

However, the most dominant waxes components of these 

varieties were alkanes ranged from 34 to 71% (Halinski et 

al., 2015). In tomato leaves, fruits and anthers, branched 

alkanes, alkenes, and cyclic compounds were detected 

(Isaacson et al., 2009; Wang et al., 2011; Smirnova et al., 

2013; Halinski et al., 2015). This finding was in the 

agreement with the other researchers that cuticular waxes in 

tomato leaf were consisted by hydrocarbons (Zygadlo et al., 

1994; Smith et al., 1996; Vogg et al., 2004). Primary 

alcohols, aldehydes and fatty acid were found to be 

principal components of cuticular wax, where alkanes 

occupied less than 15% of the total wax loads in leaves of 

barley, rice and maize (Von Wettstein-Knowles, 1971; 

Avato et al., 1982; Javelle et al., 2010; 2011; Mao et al., 

Table 2: Continued 

 
 

 

 
 

Rice 

Leaf q 

Blade 

7.57m 18 37 2 32 0 0 11 0 0 0 0 0 0  

Mao et al., 

2012 Leaf  
Sheathq 

5.8m 14 32 3 36 0 0 16 0 0 0 0 0 0 

Leaf  

Blader 

8.4m 34 31 7 24 0 0 4 0 0 0 0 0 0 

Leaf 

Sheathr 

4.5m 43 24 9 23 0 0 0 0 0 0 0 0 0 

Leaf 
 Blades 

6.2m 58 0 19 22 0 0 0 0 0 0 0 0 0 Wang et al., 
2017 

 

Maize t 

Leaf  

Blade  

8.2m 0 25 4 69 0 0 2 0 0 0 0 0 0  

Javelle et al., 
2010 Leaf 

Sheath  

4.5m 0 42 14 39 0 5 0 0 0 0 0 0 0 

 
 

 

 

 

Wheat 

Leaf 1 3.4 m 6 3 14 71 0 3 2 0 0 0 0 0 0  
 

 

 

Wang et al., 

2015a 

Leaf 2 3.6 m 4 3 10 79 0 1 2 0 0 0 0 0 0 

Leaf 3 3.9 m 5 4 15 68 0 6 3 0 0 0 0 0 0 

Leaf 4 3.6 m 5 3 11 68 0 12 2 0 0 0 0 0 0 

Spike 1 4.5 m 13 1 40 18 0 37 0 0 0 0 0 0 0 

Spike 2 5.8 m 11 1 31 30 0 27 0 0 0 0 0 0 0 

Spike 3 7.7 m 10 1 19 7 0 63 0 0 0 0 0 0 0 
Spike 4 6.6 m 10 1 31 11 0 47 0 0 0 0 0 0 0 

Leaf5  1 0 34 1 0 63 1 0 0 0 0 0 0 Zhang et al., 

2015 
Leaf6 16m 1 3 9 0 0 14 9 0 0 55 0 0 0  

Racovita et al., 

2016 

Peduncle
7 

4.9m 1 1 7 0 0 81 2 0 0 2 0 0 0 

Seedling 

leaf7 

5.4m 1 5 2 84 0 0 1 0 0 0 0 0 0  

 

Wang  et al., 
2017 

Flag leaf7 8.4m 2 9 6 77 0 1 1 0 0 0 0 0 0 
Leaf 

sheaths7 

3.5m 2 4 15 57 0 15 3 0 0 0 0 0 0 

Peduncles7 2.9m 3 13 37 23 0 36 2 0 0 0 0 0 0 
Glumes7 1.0m 2 7 10 30 0 10 2 0 0 0 0 0 0 

Anthers7 0.3m 54 1 27 3 0 27 1 0 0 0 0 0 0 

Broccoli Leaf18 1929 n 13 20 39 3 5 19 0 0 0 0 0 0 0 Lee et al., 
2015 Leaf19 3733 n 15 13 40 3 7 22 0 0 0 0 0 0 0 

Sesame  Leaf10 7.69 m 0 11 68 0 0 0 0 0 0 0 0 0 0 Kim et al., 
2007 

Tobacco Leaf11 13.9m 7.8 0 74 7 0 0 0 0 0 0 0 0 0 Cameron et 

al., 2006 
Cucumber Friut12 1.3m 21 22 46 0 3 0 0 2 0 0 2 0 3 Wang et al., 

2015a Stem12 1.6m 6 8 82 0 10 0 0 1 0 0 1 0 3 

Leaf12 1.8m 8 15 62 0 8 0 0 5 0 0 0 0 2 
Cabbage Leaf13 0 0 6 34 6 14 31 0 0 0 0 0 0 0 Laila et al., 

2017 
Note: number 0 indicates that trace or undetectable amounts were audited. aecotype col-0, bbreeding line 6-3476, ccultivar Cemelina sativum var celina, d C. sativum var  

MYB96, eC. sativum var robinson, fpotato cultivar aster, gpotato cultivar ibis, hpotato cultivar maryna, Ipotato cultivar perkoz, jegg plant cultivar uvpp, kGboma egg plant 

cultivar urafiki,  lcultivar micro tom, mcultivar tomato m82, ncultivar tomato ailsa craig, l1 tomato cultivar vf-36, l2tomato cultivar wild (ecuador), l3tomato cultivar wild 

(ecuador), l4tomato cultivar nagcarlang, l5 tomato cultivar wild (usa),pen1tomato cultivar wild (peru), pen2tomato cultivar wild (peru), pen3 tomato cultivar wild (peru), 
pen4tomato cultivar  wild (peru), pen5tomato cultivar  wild (peru), lxpentomato cultivar  hybrid, pim1tomato cultivar wild (ecuador), lxpimtomato cultivar hybrid,  obarley cultivar 

bonus, pbarley cultivar bowman, qrice  cultivar nipponbare,  rrice  cultivar japonica, smaize inbred line a188, 1wheat cultivar a14, 2wheat cultivar jing 2001, 3wheat cultivar 

fanmai 5,4wheat cultivar shanken 99, 5wheat cultiver bob white,6wheat cultivar bethlehem,7wild grass Ae. tauschii. 8broccoli cultivar mc 117,9broccoli cultivar mc91, 

10seasame cultivar various, 11tobacco cultivar graha, 12cucumber cultivar wild type, 13cabbage cultivar b. oleracea , m unit  = µg/cm2, nunit = µg/g 



 

Cuticular Waxes Biosynthesis in Crops / Intl. J. Agric. Biol., Vol. 21, No. 5, 2019 

 917 

2012) whereas ketones were the most abundant component 

in leaves of barley cultivar Bowman (Yu et al., 2008). 

In wheat, primary alcohols were the major 

components in leaves cuticular wax followed by alkanes, 

esters, aldehydes and fatty acids. Ketones deposition 

variations were observed in wheat leaves. In wheat leaves, 

ketones were found in trace amount the cuticular wax. 

However, in spike, a traceable amount of ketones was 

identified (Wang et al., 2015a, 2017). In addition, there 

were large differences in the amounts of ketones among 

different wheat varieties (Wang et al., 2015a; Zhang et al., 

2015). Wheat cultivar Bethlehem revealed wax coverage of 

16 μg/ cm
2
 in leaf and 49 μg/cm

2
 in peduncles (Zhang et al., 

2015). Furthermore, in wheat cultivar Bethlehem, alkanols 

were 55% of total wax loads in leaf and β-diketone and 

hydroxy-β-diketones collectively comprised 81% of the 

total wax loads in peduncle. This happened due to 

discrepancy in the regulation of the acyl-reduction and β-

diketone biosynthetic pathways in the two examined organs 

(Racovita et al., 2016). 

In broccoli cultivars MC117 and MC91, fatty acids 

(13 and 15%, respectively), aldehydes (20 and 13%, 

respectively), alkanes (38 and 39%, respectively) and 

ketones (19 and 21%, respectively) were found in the total 

wax loads in leaf (Lee et al., 2015). In sesame, major 

components of waxes in leaves were alkanes (68% of total 

wax) and aldehydes (11% of total wax) (Kim et al., 2007). 

In tobacco, the primary component of cuticular wax was 

alkanes, which constituted 75% of the total wax load fully 

expanded leaves while fatty acids and alcohols occupied 

smaller proportion of total wax loads (Cameron et al., 

2006). In cucumber, alkenes, primary alcohols, branched 

alkanes, phenols, esters, and aldehydes, phenols were major 

compounds in the cuticular waxes (Wang et al., 2015a). In 

cabbage leaf, alkane contributed 34% followed by ketones 

31% of total wax loads (Laila et al., 2017). 

In spite of a vast variation in cuticular wax loads and 

contents depending upon crops and organs, the prime 

reasons that responsible for these variations are not 

identified. Nevertheless, the present information may be 

used as a genetic source for determination of new genes 

associated with cuticular wax biosynthsis. 

Biosynthesis of cuticular wax genes in crops: In crops, the 

genes responsible for biosynthesis of cuticular wax are not 

well characterized such as in Arabidopsis, though, recently 

notable advances have been made in this respect (Table 1). 

Identification and functional expression of the glossy (gl) 

mutants provided an opportunity to understand about wax 

biosynthesis in maize. Mutants of GL4 and GL8 are 

homolog of AtKCS6 and AtKCR, respectively. They 

displayed a spectacular decrease in the amount of alkanes, 

alcohols and aldehydes in the leaves of wild type seedling 

(Avato et al., 1987; Dietrich et al., 2005; Liu et al., 2009). 

In another study on maize, it was found that gl1 and gl2 

mutants which were homolog to AtCER3 and AtCER2, 

respectively, declined wax deposition in seedling leaves, 

especially the aldehydes levels significantly decreased or 

could not be identified. Contrarily, the gl1gl2 double mutant 

enhanced the levels of wax esters (Bianchi et al., 1979; 

Lemieux, 1996; Hansen et al., 1997; Velasco et al., 2002; 

Sturaro et al., 2005). It was also found that GL13, an ABC 

transporter, was associated with cuticular wax deposition 

(Li et al., 2013). 

In rice, crystal-spares leaf1 (wsl1) mutant, is a KCS 

gene which has a lesion of WSL1 gene, catalyzed the 

creation of C20–C24 VLCFA precursors of leaf waxes. It 

reduced growth, fertility, leaf fusion and increased drought 

sensitivity due to wax-deficiency. This is indicated that 

WSL1 might be involved in the deposition of other lipids 

associated with growth and development of the plant (Yu et 

al., 2008). ONION1 (ONI1) is another homolog to rice KCS 

protein. It is accountable for synthesis of C20 and C22 

saturated VLCFAs, which are important for development of 

shoot (Ito et al., 2011). From functional expression of wax-

deficient anther1 (wda1) mutant, it was observed that a 

WDA1 protein, which is homolog to AtCER1, was 

responsible for synthesis of VLC alkenes and alkanes in 

pollen and anthers (Jung et al., 2006). Functional 

characterization of OsGL1-6, which is also homolog to 

AtCER1, reported that it is needed for wax biosynthesis on 

leaf blades. It was also found that reduced expression of the 

OsGL1-6 gene was linked with notable decreases in total 

wax loads and enhanced drought sensitivity (Zhou et al., 

2013). Characterization of rice mutants, gl1-2 and gl1-

1/wsl2, revealed that these mutants reduced overall cuticular 

wax loads and increased sensitivity to drought stress (Islam 

et al., 2009; Qin et al., 2011; Mao et al., 2012). Over 

expression of Drought-Induced Wax Accumulation 1 

(DWA1) held an AMP-binding domain, which increased 

VLCFA synthesis and enhanced drought resistance (Zhu 

and Xiong, 2013). OsGL1-3 is homologous to maize GL1 

and Arabidopsis WAX2/YRE/CER3/FLP, which 

significantly increased biosynthesis of cuticular wax and 

enhanced tolerance to water stress (Zhou et al., 2015). 

OsWS1 belongs to the membrane-bound O-acyl transferase 

gene family, and is associated with wax biosynthesis in rice 

(Xia et al., 2015). OsHSD1 belongs to the short-chain 

dehydrogenase reductase family, which enhanced VLCFAs 

biosynthesis and soluble fatty acids in the leaves of the 

oshsd1 mutant (Zhang et al., 2016). WSL3 encodes KCR in 

rice, which contributes to VLCFA biosynthesis and wax 

depositions in leaf. On the other hand in rice mutant, wax 

crystal-sparse leaf 3 (wsl3) gene reduced epicuticular wax 

crystals and wax composition on the leaf surface (Gan et al., 

2016). ORF4 is homologous to the KCS6 family of KCS, 

which is similar to WSL3 gene of rice and regulates 

cuticular wax formation (Hong-bing et al., 2017). WSL4 

encodes a KCS, a homolog of AtCER6, which increased the 

cuticular wax load in rice leaves (Wang et al., 2017). 

In tomato fruit cuticle, the lecer6 mutant belongs to 

CER6-like KCS (LeCER6), decreased accumulation of 

alkanes and aldehydes but on the other hand, amounts of 

https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
https://link.springer.com/article/10.1007/s00299-015-1772-2
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triterpenoid increased in the total wax loads (Vogg et al., 

2004). In tomato fruits, the over expression of SlTTS1 and 

SlTTS2 enhanced biosynthesis of terpenoid (Wang et al., 

2011). However, alkane is the dominant wax component in 

the tomato wax but genes/proteins have not yet been 

identified for the biosynthesis of alkanes. In B. napus, 

glossy mutant BnaA.GL was characterized, which reduced 

wax biosynthesis and increased sensitivity to drought stress 

(Pu et al., 2013). BraLTP1 belongs to non-specific lipid 

transfer proteins (nsLTPs), which decreased wax deposition 

in leaves (Liu et al., 2014). In B. rapa, the BrWax1 gene is 

found on linkage group A01, which is involved in cuticular 

wax biosynthesis in leaves (Zhang et al., 2013a). In 

Camelina sativa, few wax biosynthesis genes have been 

detected recently but their characterization is not complete 

yet (Lee et al., 2014). In Cucumber, CsWAX2 is homolog of 

AtWAX2, which performs fundamental functions in wax 

biosynthesis (Wang et al., 2015a) and CsCER1, a homolog 

of AtCER1, played an important role in wax VLC alkanes 

biosynthesis (Wang et al., 2015b). In Cabbage, BoLTP2 

gene is a non-specific lipid-transfer protein1, involved in 

the transformation of ketones to lipid which reduced wax 

deposition. BoCER3 gene is homologous to AtCER3 

protein, which is related to wax deposition through 

converting aldehydes to alkanes. BoKCS1 and BoKCR1 are 

homologs to AtKCS and AtKCR1 protein, respectively, 

which decreased acyl-CoAs synthesis and eventually 

influence total wax loads. Likewise, expressions of 

BoLACS1 influenced wax depositions. Besides, the 

BoMAH1 gene engaged in synthesis of secondary alcohols 

and ketones (Laila et al., 2017). 

In wheat, W1W2 is a homolog of Arabidopsis CER4-6 

proteins. It produced hydroxyl-β-diketones, which enhanced 

drought tolerance through reducing cuticle permeability 

(Zhang et al., 2013b). W3, a homolog of Arabidopsis CER1 

and CER3, is essential for β-diketone biosynthesis but 

suppresses its hydroxylation (Zhang et al., 2015). TaFAR1, 

a homolog of Arabidopsis CER4, is an active acyl-CoA 

reductase. It produced primary alcohols, and as a result 

augmented total wax loads on wheat leaf blades (Wang et 

al., 2015b). TaFAR5, a homolog to Arabidopsis CER4, is an 

alcohol-forming fatty acyl-coenzyme A reductase (FAR), 

which contributes significantly to produce primary alcohols 

in wheat leaf blade (Wang et al., 2015c). TaFAR2, TaFAR3, 

and TaFAR4 genes are a homolog of Arabidopsis CER4 

protein, which produced primary alcohols in cuticular wax 

(Wang et al., 2016). From characterization of the Iw genes, 

it was found that Iw genes regulatory mechanism control W-

COE expression and β-diketone formation (Huang et al., 

2017). In, Dgenome (Ae. Tauschii), Ae.tFAR1, Ae.tFAR2, 

Ae.tFAR3, Ae.tFAR4, and Ae.tFAR6 are homolog to 

AtCER4, which principally accountable for deposition of 

primary alcohols (Wang et al., 2017). In barley, the Cer-cqu 

gene cluster is involved in β-diketons biosynthesis which 

consists of several proteins families including type-III 

polyketide synthases, hydrolases, and cytochrome P450s 

(Hen-Avivi et al., 2016; Schneideret al., 2016). The barley 

eceriferum-b.2 (cer-b.2) mutant produces β-diketons, which 

makes glossy leaf sheaths and deficient in the cuticular wax 

component, 14, 16-hentriacontanedione (Zhou et al., 2017). 

 

Conclusion 
 

This review has revealed that wax compositional differences 

exist among different crops even organ to organ. High levels 

of structural diversities associates with cuticular wax 

deposition in crops are largely influenced by different genes. 

Several genes have been already identified, which are 

related to cuticular wax biosynthesis. Cuticular wax 

components are produced by two different complex 

pathways due to the influence of biotic and abiotic stress, 

which allow adaptive mechanism at the time of crop-

environment interactions. Moreover, specific single wax 

components yet remain unknown during development and 

growth stages of different crops. Very few studies have 

focused on primary alcohols and ketons in wheat and barley, 

but most of the factors are still unidentified. Additionally, 

genome sequencing technologies have been progressed 

enormously, allowed identifying new race of cuticular 

waxes biosynthesis genes in crops.  Knowledge on the wax 

biosynthesis mechanisms in different crops will be helpful 

to breed new crops cultivars better tolerant to environmental 

stresses. 
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