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Abstract 
 

This article investigates the relationships between leaf chlorophyll content (LCC) and these combination variables derived 

from vegetation indices, which are extracted from HJ-1A/1B images. The combined models ‒ new measures of monitoring 

LCC, are compared to single vegetation index model. The results demonstrate that normalization combination for normalized 

difference vegetation index (NDVI) and green normalized difference vegetation index (GNDVI), namely N (NDVI, GNDVI), 

is feasible to monitor winter wheat LCC at jointing stage (node formation). R2 and RMSE are 0.861 and 0.345, respectively, 

which are more ideal than those of single vegetation index model. The accuracy increases by 3.4%. Ratio combination for 

NDVI and GNDVI, namely R (NDVI, GNDVI), is feasible to monitor LCC at booting stage. R2 and RMSE are 0.616 and 

0.208, respectively, which are more ideal than those of single vegetation index model. The accuracy increases by 15.1%. 

Difference combination for NDVI and GNDVI, namely D (NDVI, GNDVI), is feasible to monitor LCC at anthesis. R2 and 

RMSE are 0.694 and 0.409, respectively, which are more ideal than those of single vegetation index model. The accuracy 

increases by 13%. In conclusion, the combined models can provide a new method for accurately monitoring crop growth 

conditions in the future. © 2017 Friends Science Publishers 
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Introduction 

 

Leaf chlorophyll content (LCC) is an indicator of crop 

substance transfer and energy change and an important 

index to evaluate photosynthetic capacity. It could also 

indirectly reflect the health status of crops, which is an 

indispensable index in remote sensing agricultural 

monitoring (Gitelson et al., 2012; Feng et al., 2015; Tan 

et al., 2015). 

Many domestic and foreign scholars have carried out 

research on LCC prediction based on crop leaf reflectance 

characteristics (Soummer et al., 2007; Guizar-Sicairos et al., 

2008). The rapid acquisition of LCC is also important for 

the study of primary productivity of crops. Remote sensing 

monitoring is dominated by hyper spectral and multi 

spectral data. In the principle of remote sensing monitoring, 

the correlation between LCC and reflectance spectrum has 

been studied in experiments (Horler et al., 1983), and some 

studies have shown that the position and shape of the red 

edge of the spectrum can be employed as indicators of 

monitoring the vegetation physic chemical parameters 

(LCC, etc.) (Curran et al., 1990; Filella and Penuelas, 1994). 

Subsequently, a multivariate statistical method based on the 

monitoring of LCC was extensively developed (Wessman et 

al., 1988; Yoder and Pettigrew-Crosby, 1995). Clever sand 

Gitelson (2013) sought a common sensitive band or 

combination of LCC and leaf nitrogen content based on 

multispectral data. Amar et al. (2016) found that the 

proposed image processing technique of LCC measurement 

would be a good alternative for measuring LCC rapidly and 

with ease. With its good precision and fast processing, the 

symbolic regression algorithm was a powerful tool for 

remote sensing of LCC that could be used advantageously 

in the reprocessing of large data sets (Tan et al., 2012). 

Gitelson et al. (2003) proved that reflectance measurement 

makes it possible to quickly and non-destructively assess, in 

situ, the LCC in leaves. Simple and robust algorithms were 

explored for spectral assessment of LCC using the diverse 

hyper spectral data sets for six vegetation types acquired in 

four locations (Japan, France, Italy and USA) (Yoshio et al., 

2016). Kelly and Yuhong (2013) developed and evaluated a 

species percent cover-based LCC scaling up procedure in 

order to accurately estimate crop LCC at canopy or 

landscape level. Adaptive Network-based Fuzzy Inference 

System (ANFIS) model which was a good method to be 

applied to hyper spectral data for estimation of vegetation 

LCC can greatly improve vegetation LCC estimation 

accuracy (Yao et al., 2010). Previous results showed that 
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good estimates of LCC were feasible using ratio vegetation 

index (RVI) obtained from hyper spectral data (Kooistra 

and Clevers, 2016). Many researchers have 

demonstrated the feasibility of using canopy reflectance 

spectros copy to detect crop LCC (Al-Abbas et al., 

1974; Hinzman et al., 1986). 

The majority of the above cited studies presented 

empirical evidence suggesting a functional relationship 

between crop LCC and remote sensing vegetation indices, 

and these were mostly focused on hyper spectral data or 

single remote sensing vegetation index. There were only 

few reports on quantitatively monitoring LCC for winter 

wheat canopy using the combination of remote sensing 

vegetation indices extracted from satellite images. Besides, 

the relationships differed from one eco system type to 

another eco system due to the influences of vegetation type, 

strong background signals, canopy structure and spatial 

heterogeneity. Further, existing remote sensing-based LCC 

products lacked adequate ground validation, which was 

critical for establishing the uncertainty and accuracy of such 

products so that they could be used for guiding crop 

production practices (Tan et al., 2015). 

The objective of the present study was to develop a 

method of further optimizing remote sensing monitoring 

model of winter wheat LCC at key growth stages. Sensitive 

vegetation indices or their combinations were adopted by 

the comprehensive analysis of LCC and multi-spectral 

satellite remote sensing vegetation index at critical growth 

stage, while taking the differences between HJ-1A/1B multi 

spectral data (spatial resolution=30 m and time resolution=2 

d) and the quantitative relationship between the ratio and the 

normalized combination under consideration at the same 

time. It can be employed to establish a comprehensive 

monitoring model of remote sensing vegetation index 

combination. 

 

Materials and Methods 
 

Experimental Details 

 

Three field experiments were performed. In all these 

experiments, the varieties of winter wheat (Triticum 

aestivum L.) used wereYang Mai 158, Yang Mai 16. First 

field experiment was conducted from March to April in 

2012 in Tai Xing City, Jiang Yan District, Xing Hua City, 

and Da Feng District in Jiangsu Province, P.R. China. A 

total of 66 sampling sites were set (15‒20 in each study 

area). Second field experiment was conducted from March 

to May in 2013 in Tai Xing City, Jiang Yan District, Xing 

Hua City, and Gao You City in Jiangsu Province, P.R. 

China. A total of 60 sampling sites were set (10‒20 in each 

study area). Third field experiment was conducted from 

March to April in 2014 in Yi Zheng City, Jiang Yan 

District, Xing Hua City, Tai Xing City, and Da Feng 

District in Jiangsu Province, P.R. China. A total of 104 

sampling sites were set (15‒25 in each study area). 

Study Areas 

 

Study areas are in the central region of Jiangsu Province 

(119°12′-120°26′ E, 32°2′-33°16′ N), which is one of the 

main winter wheat production areas in Jiangsu. The areas 

have sub-tropical moist monsoon climate, dish-shaped plain 

depression, about 1000 mm annual average precipitation, 

and about 2200 h annual average sunshine. Rice is the fore-

rotating crop in study areas. 

 

Field Investigation and Laboratory Tests 

 

The sampling sites in study areas were relatively uniform 

and scattered. Geographical location information of each 

sampling site was collected by Juno ST hand held GPS 

(Trimble Company, United States). Sampling periods have 

been determined by actual field investigation, including 

jointing stage, booting stage and anthesis. Field 

investigation failed to detect any significant difference of 

winter wheat growth conditions from 2012 to 2014 in the 

same periods. Representative large fields that had uniform 

seedling growth and the best uniform management were 

chosen randomly as sampling points. These sampling points 

were at least 60 m away from field boundaries. Sampling 

sites in different winter wheat growth stages were kept 

as close as those in the first stage. Four rows (50 cm) of 

winter wheat plants with uniform growth conditions 

were chosen in the central region of each study area. 

Meanwhile, GPS positioning was applied, and 

geographic information was recorded. 

A total of 15‒20 winter wheats, which sampled with 

soil, were selected at each sampling point at jointing stage, 

booting stage and anthesis, respectively. The samples were 

put into different net bags divided by the sampling points 

and were labeled with winter wheat variety and location 

information. Useful leaves, which were the growth and 

development of normal, pest free and fresh leaves, were 

selected, preserved in a dark place and promptly sent to the 

laboratory. The samples were taken out, tested at the place 

where the light was off, chopped up and then mixed 

uniformly. We accurately weighed 0.5 g samples in a 

mortar, added 25 mL acetone with 80%, grinded and then 

filtered into a 50 mL volumetric flask. After wards, the 

mortar and filter paper must be washed with 80% acetone, 

and the lotion was put into the volumetric flask. 

Furthermore, the volume was fixed to 50 mL. At last, the 

spectrophotometric method was employed to measure LCC. 

At last, the spectrophotometric method was employed to 

measure LCC (Laval-Martin, 1985). 

 

Remote Sensing Images and Processing 

 

Remote sensing images on sampling dates in this paper 

were 2A HJ-1A/1B images, which were provided free by 

China Centre for Resources Satellite Data and Application. 

The research employed 9 HJ-1A/1B images, and acquisition 
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dates of the satellite images were coincident with winter 

wheat growth stages, namely, including 20120309, 

20130312 and 20140303 at jointing stage, 20120412, 

20130414 and 20140410 at booting stage, and 20120428, 

20130501 and 20140424 at anthesis, respectively. 

HJ-1A/1B images were preprocessed by ENVI5.1 

software. First, rough geometric correction of HJ-1A/1B 

images was conducted by the 1:100,000 topographic map of 

Jiangsu Province. Next, refined geometric correction of HJ-

1A/1B images was performed by GPS control points, which 

were obtained by ground measurement. Atmospheric 

correction and reflectivity conversion were accomplished by 

empirical linear conversion (Tan et al., 2015). 

Representative water body in the study areas was 

chosen as the low-reflectivity calibration object and open 

cement pavement was employed as high-reflectivity 

calibration object. HJ-1A/1B image scaling was 

implemented by manual calibration. The radiance formula, 

which was employed to convert digital number (DN) value 

images into radiance images based on absolute calibration 

coefficient, is as follows (Equation (1)): 
 

L=DN/a+L0 (1) 
 

Where L is radiance, a is gains of the absolute 

calibration coefficient and L0 is off set. The converted 

radiance unit is W.m−2.sr−1.μm−1. 

 

Remote Sensing Vegetation Indices 

 

Common remote sensing vegetation indices corresponding 

to LCC were chosen according to the literature. Spectral 

reflectance corresponding to sampling sites of GPS 

positioning was extracted by ENVI 5.1 software. Next, 

satellite remote sensing vegetation indices of each sampling 

site were calculated by combining existing algorithms of 

satellite remote sensing indices (Table 1). 

 

Combinations of different Remote Sensing Vegetation 

Indices 

 

Eight common remote sensing vegetation indices were 

chosen, namely, normalized difference vegetation index 

(NDVI), nitrogen reflectance index (NRI), green normalized 

difference vegetation index (GNDVI), structure intensive 

pigment index (SIPI), plant senescence reflectance index 

(PSRI), difference vegetation index (DVI), ratio vegetation 

index (RVI) and enhanced vegetation index (EVI). They 

were combined in pairs by difference calculation, ratio 

calculation and normalization calculation. Here, A and B 

were taken for example. Difference combination, ratio 

combination and normalization combination were defined D 

(A, B) = A - B, R (A, B) = A/B and N (A, B) = (A - B)/(A + 

B), respectively. Therefore, a total of 28×3=84 

combinations were gained to promise diversity and 

reliability at jointing stage, booting stage and anthesis. 

Data Analysis and Utilization 

 
Relationships between different remote sensing vegetation 
indices and their combinations and LCC at jointing stage, 
booting stage and anthesis were analyzed by SPSS18.0. The 
remote sensing monitoring model of regional winter wheat 
seedling parameters in major growth periods was 
established by the strongest correlations in exponential, 
linear, logarithmic, quadratic polynomial (here in after 
referred to as polynomial) and power correlation models. 
Subsequently, the 1:1 relation diagram between predicted 
LCC values and measured LCC values was drawn to 
evaluate the established model. Data from the field 
experiments in 2013 (60 samples) and 2014 (104 samples) 
were together used to develop the remote sensing 
monitoring models, and data from the field experiments in 
2012 (66 samples) were used to evaluate the models. 
Accuracy of the remote sensing monitoring model was 
assessed by the coefficient of determination (R2) and root 
mean square error (RMSE). RMSE was computed 
according to Equation (2). Moreover, the spatial 
quantization diagram of LCC grade distribution at different 
stages in the central region of Jiangsu Province was drawn 
with ArcGIS 10.3 software. 
 

(2) 
 

Where, and  indicate measured values and 

predicted values, respectively; represent number of 

samples. 

 

Results 

 

Distribution of LCC 

 

In this paper, we used the 2013 and 2014 data as training set 

to develop the remote sensing monitoring models, and used 

2012 data as test set to evaluate the models. Table 2 showed 

that the amplitude, average, standard deviation and standard 

error of samples of training set and test set were similar. 

And the training set and the test set are independent of each 

other. Thus, it is reliable to establish and validate the model 

using these data sets. 

 

Relationships between Remote Sensing Vegetation 

Indices, their Combinations and Winter Wheat LCC at 

different Growth Stages 
 

Viewed from individual jointing (node formation), 

booting and anthesis stages, it was easy to find by 

comparing Tables 3 and 4 that most of the combinations 

were most strongly correlated to LCC (P < 0.01). 

Furthermore, according to comparisons of r, at jointing 

stage, the normalization combination of NDVI and GNDVI, 
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namely N (NDVI, GNDVI), had the highest correlation 

coefficient in all three types of combinations, which was 

higher than that of single vegetation index. 

Comprehensively, N (NDVI, GNDVI) had a stronger 

correlation (r = 0.838, P < 0.01) than R (NDVI, GNDVI) 

and D (NDVI, GNDVI). Therefore, LCC inversion by N 

(NDVI, GNDVI) was feasible at jointing stage according to 

the principle of sensitive parameter determination. At 

booting stage, the ratio combination of NDVI and GNDVI, 

namely R (NDVI, GNDVI), had the highest correlation 

coefficient in all three types of combinations, which was 

higher than that of single vegetation index. 

Comprehensively, R (NDVI, GNDVI) had stronger 

correlation (r = 0.819, P < 0.01) than D (NDVI, GNDVI) 

and N (NDVI, GNDVI). Therefore, LCC inversion by R 

(NDVI，GNDVI) was feasible at booting stage according 

to the principle of sensitive parameter determination. At 

anthesis, the difference combination of NDVI and GNDVI, 

namely D (NDVI, GNDVI), had the highest correlation 

coefficient in all three types of combinations, which was 

higher than that of single vegetation index. 

Comprehensively, D (NDVI, GNDVI) had stronger 

correlation (r = 0.803, P < 0.01) than R (NDVI, DVI) and N 

(NDVI, GNDVI). Therefore, LCC inversion by D (NDVI, 

GNDVI) was feasible at anthesis according to the principle 

of sensitive parameter determination. 

Establishment of Remote Sensing Vegetation Indices 

Combined Model of Winter Wheat LCC at different 

Growth Stages 
 

Based on the principle of the strongest correlation and above 

analysis results, N (NDVI, GNDVI), R (NDVI, GNDVI) 

and D (NDVI, GNDVI) were chosen to monitor winter 

wheat LCC at jointing stage, booting stage and anthesis, 

respectively. Next, the sensitive combinations were 

employed as independent variables and LCC was employed 

as the dependent variable to establish remote sensing 

monitoring models of winter wheat LCC at jointing stage, 

booting stage and anthesis by exponential, linear, 

logarithmic, polynomial and power modeling methods 

(Table 5). 

Formulas with the highest R2 were determined as 

the remote sensing monitoring models of winter wheat 

LCC at jointing stage, booting stage and anthesis (Fig. 

1). Specifically, among them, LCC had the closet linear 

relation with the combination of N (NDVI, GNDVI) at 

jointing stage. The monitoring model of winter wheat 

LCC at jointing stage was established by linear method 

(R2 = 0.702, P < 0.01). At booting stage, LCC had the 

closet polynomial relation with the combination of R 

(NDVI, GNDVI). The monitoring models of winter 

wheat LCC at booting stage was established by 

polynomial method (R2 = 0.684).  

Table 1: Common satellite remote sensing vegetation indices 
 

Vegetation index Calculating formula 

Normalized difference vegetation index (NDVI) NDVI=(B4-B3)/(B4+B3) 

Nitrogen reflectance index (NRI) NRI=(B2-B3)/(B2+B3) 
Green normalized difference vegetation index (GNDVI) GNDVI=(B4-B2)/(B4+B2) 

Structure intensive pigment index (SIPI) SIPI=(B4-B1)/(B4+B1) 

Plant senescence reflectance index (PSRI) PSRI=(B3-B1)/ B4 
Difference vegetation index (DVI) DVI= B4-B3 

Ratio vegetation index (RVI) RVI= B4/B3 

Enhanced vegetation index (EVI) EVI= 2.5*( B4-B3 ) /(B4+6*B3-7.5*B2+1) 

Note: B1, B2, B3 and B4 denoted spectrum reflectance at blue, green, red and near infrared bands, respectively. The same as below 

 

Table 2: Distribution of LCC in training and test datasets 
 

Year Sample size Period Maximum value Minimum value Average value Standard deviation Standard error 

2012 66 Jointing stage 5.514 3.778 4.688 1.748 0.215 
Booting stage 5.519 4.448 5.149 0.372 0.046 

Anthesis 6.288 4.517 5.408 0.887 0.109 

2013 60 Jointing stage 5.467 3.488 4.716 1.603 0.207 
Booting stage 5.522 4.498 5.233 0.308 0.041 

Anthesis 6.072 4.46 5.371 0.809 0.104 

2014 104 Jointing stage 5.762 3.963 5.08 1.463 0.143 
Booting stage 5.813 4.782 5.553 0.441 0.043 

Anthesis 6.302 4.847 5.671 0.727 0.071 

 

Table 3: Correlation coefficients between vegetation indices and winter wheat LCC in the key period 
 

Vegetation Index NDVI NRI GNDVI SIPI PSRI DVI RVI EVI 

Jointing stage 0.604** 0.480** -0.677** -0.329** -0.390** 0.402** 0.414** 0.354** 

Booting stage 0.452** 0.348** -0.612** -0.281** -0.402** 0.284** 0.204** 0.258** 

Anthesis 0.567** 0.399** -0.674** -0.429** -0.143** -0.447** -0.382** -0.518** 

Note:*: P <0.05; **: P <0.01.The same as below 
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At anthesis, LCC had the closet exponential 

relation with the combination of D (NDVI, GNDVI). 

The monitoring model of winter wheat LCC at anthesis 

was established by exponential method (R2 = 0.646). 
 

Evaluation of LCC Monitoring Models 
 

A total of 66 samples, which were observed from the 

experiments at jointing stage (0309), booting stage 

(0412) and anthesis (0428) in 2012, respectively were 

used to test the remote sensing monitoring model of 

winter wheat LCC mentioned earlier. The 1:1 relation 

diagrams between predicted LCC of established models 

and measured LCC were drawn to evaluate accuracy of 

LCC monitoring models. These three remote sensing 

monitoring models, which were based on the 

combinations of N (NDVI, GNDVI), R (NDVI, GNDVI) 

and D (NDVI, GNDVI), respectively, were compared with 

corresponding single vegetation index models (Fig. 2).  

Table 4: Correlation coefficients between combinations of vegetation indices and winter wheat LCC in the key periods 

(Jointing stage, Booting stage, Anthesis) 
 
Vegetation index combination Difference combination Ratio combination Normalized combination 

(NDVI，NRI) (0.362** ，0.319**，0.582**) (-0.430**，-0.315**，-0.081) (-0.516** ，-0.068 ，-0.074) 

(NDVI，GNDVI) (0.725**，0.752**，0.803**) (0.805**，0.819**，0.692**) (0.838**，0.797**，0.751**) 

(NDVI，SIPI) (0.658** ，0.642** ，0.729*) (0.693**，0.679**，0.640**) (0.700**，0.671**，0.675**) 

(NDVI，PSRI) (0.637** ，0.653**，0.641**) (0.612** ，0.602** ，0.160) (0.645**，0.622**，0.488**) 

(NDVI，DVI) (-0.402**，-0.345**，0.406**) (0.295**，0.222**，0.746**) (0.329**，0.223**，0.682**) 

(NDVI，RVI) (-0.367**，-0.239**，0.479**) (0.151* ，0.272**，0.639**) (0.141* ，0.266**，0.630**) 

(NDVI，EVI) (-0.291**，-0.276**，0.567**) (-0.080 ，0.032 ， 0.496**) (-0.089 ，-0.032 ， 0.572**) 

(NRI，GNDVI) (0.690** ，0.601**，0.742**) (0.249**，0.181**，0.590**) (0.226** ，0.086 ，0.613**) 

(NRI，SIPI) (0.534** ，0.369** ，0.517*) (0.382**，0.303**，0.496**) (0.387**，0.214**，0.511**) 

(NRI，PSRI) (0.534** ，0.476**，0.518**) (0.260** ，0.147* ，0.160*) (0.008  ， -0.034  ，-0.046) 

(NRI，DVI) (-0.402**，-0.345**，0.406**) (0.530**，0.449**，0.572**) (0.542**，0.404**，0.550**) 

(NRI，RVI) (-0.385**，-0.270**，0.385**) (0.518**，0.410**，0.497**) (0.529**，0.366**，0.501**) 

(NRI，EVI) (-0.327**，-0.313**，0.505**) (0.366**，0.241**，0.476**) (0.283** ，0.096 ，0.505**) 

(GNDVI，SIPI) (-0.225  ，-0.236**，-0.518**) (-0.365**，-0.387**，-0.494**) (-0.441**，-0.372**，-0.509**) 

(GNDVI，PSRI) (-0.364**，-0.271**，-0.653**) (-0.024，  0.025， 0.089) (-0.051  ， 0.036 ， 0.322**) 

(GNDVI，DVI) (-0.402**，-0.345**，  0.406) (-0.644** ，-0.578** ，-0.086) (-0.636** ，-0.553** ，-0.129) 

(GNDVI，RVI) (-0.455**，-0.359**，0.247**) (-0.625**，-0.545**，-0.240**) (-0.656**，-0.543**，-0.262**) 

(GNDVI，EVI) (-0.402**，-0.380**，0.351**) (-0.415** ，-0.294** ，0.122) (-0.478** ，-0.382** ，0.146*) 

(SIPI，PSRI) (-0.082 ，0.031 ，-0.339**) (0.206** ，0.264** ， 0.107) (0.237** ，0.275** ，0.351**) 

(SIPI，DVI) (-0.402**，-0.345**，0.406**) (-0.481**，-0.401**，0.290**) (-0.450** ，-0.385**，0.244**) 

(SIPI，RVI) (-0.439**，-0.342**，0.321**) (-0.497** ，-0.388**，0.137*) (-0.397** ， -0.388** ，0.117) 

(SIPI，EVI) (-0.385**，-0.357**，0.431**) (-0.356**，-0.226**，0.283**) (-0.397** ，-0.300**，0.333**) 

(PSRI，DVI) (-0.403**，-0.345**，0.406**) (-0.473**，-0.468**，-0.288**) (-0.468**，-0.464**，-0.330**) 

(PSRI，RVI) (-0.428**，-0.330**，0.360**) (-0.479**，-0.442**，-0.316**) (-0.496**，-0.445**，-0.348**) 

(PSRI，EVI) (-0.370**，-0.354**，0.483**) (-0.364**，-0.287**，-0.174**) (-0.391**，-0.347**，-0.211**) 

(DVI，RVI) (0.402**，0.354**，-0.406**) (-0.115 ， 0.009 ， -0.133*) (-0.193** ，-0.010 ， -0.177*) 

(DVI，EVI) (0.402**，0.354**，-0.406**) (-0.189**， -0.079， 0.179*) (-0.224** ，-0.131* ，0.213**) 

(RVI，EVI) (0.123  ，-0.087  ，  0.068) (-0.204**，-0.149*，0.223**) (-0.154* ，-0.173* ， 0.296**) 

Note:The three values from left to right in parentheses show the correlation coefficients at jointing stage, booting stage and anthesis, respectively.Bold 
figures mean the best significance 

 

Table 5: Model of winter wheat LCC based on remote sensing vegetation indicescombinations through different modeling 

method 
 

Period modeling method Formula R² 

Jointing stage Exponential function y = 4.6573e0.5534x 0.701 

Linear function y = 2.5613x + 4.6775 0.702 

Logarithmic function No result.  
Polynomial function y = 0.1008x2 + 2.5639x + 4.6754 0.701 

power function No result.  

Booting stage Exponential function y = 3.4635e0.3441x 0.661 
Linear function y = 1.643x + 3.2638 0.670 

Logarithmic function y = 1.4871ln(x) + 4.9456 0.675 

Polynomial function y = -0.48458x2 + 2.5716x + 2.8449 0.684 
Power function y = 4.9273x0.3137 0.675 

Anthesis Exponential function y = 4.9171e0.5781x 0.646 

Linear function y = 2.8686x + 4.9512 0.645 
Logarithmic function No result.  

Polynomial function y =0. 41144x2 + 2.8594x + 4.9402 0.643 

Power function No result.  
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Employing the vegetation index the most strongly 

related to LCC as independent variable, the single 

vegetation index models were established with the modeling 

method of the simultaneous vegetation index, which was the 

same with the modeling method of the combination model 

(e.g., exponential, linear, logarithmic, polynomial and 

power modeling methods). 

The results could be seen from comparison (Fig. 2). At 

jointing stage, the predicted LCC obtained from the N 

(NDVI, GNDVI) monitoring model was highly correlated 

with measured LCC (R2=0.861, RMSE = 0.345), R2of the 

N(NDVI, GNDVI) monitoring model was greater than R2 of 

the single vegetation index model, and RMSE of the N 

(NDVI, GNDVI) monitoring model was lower than RMSE 

of the single vegetation index model, which showed that the 

N (NDVI, GNDVI) model of monitoring winter wheat LCC 

was more ideal than the single vegetation index remote 

sensing monitoring model, and compared to the single 

vegetation index model, the accuracy of the combination 

model based on N (NDVI, GNDVI) was improved by 3.4%. 

Therefore, N (NDVI, GNDVI) was more applicable to 

remote sensing monitoring of winter wheat LCC at jointing 

stage. Similarly, because the R (NDVI, GNDVI) monitoring 

modeling at booting stage showed R2 = 0.616, RMSE = 

0.208 and 15.1% growth of accuracy, it indicated that the R 

(NDVI, GNDVI) was more applicable to remote sensing 

monitoring of winter wheat LCC at booting stage. Because 

the D (NDVI, GNDVI) monitoring modeling showed 

R2=0.694, RMSE=0.409 and 13% growth of accuracy, it 

indicated that the D (NDVI, GNDVI) was more applicable 

to remote sensing monitoring of winter wheat LCC at 

anthesis. In conclusion, the combination model based on 

pair vegetation indices, used to monitor LCC, can improve 

the monitoring accuracy, so that it is feasible to provide a 

new method for accurately monitoring crop growth 

conditions at critical growth stages in the future. 

 
Thematic Maps of Winter Wheat LCC at Critical 

Growth Stages 

 
Based on the optimal models in Table 4, HJ-1A/1B 

images in 2014 and the calculation formulas in Table 1, 

 
 

Fig. 1: Remote sensing monitoring model of winter wheat LCC in the key periods 
 

 
 

Fig. 2: Reliability testing of the remote sensing monitoring model of winter wheat LCC in the key periods 
SVI: Single vegetation index; CVI: Combination of vegetation indices 
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numerical value maps of sensitive satellite remote sensing 

variables were generated, which were correctly and 

effectively calculated one by one. After binaryzation 

masking, sampling sites were positioned by GPS mentioned 

earlier and planting area of winter wheat was extracted by 

supervised classification method. Next, field sampling 

correction was implemented to promise extraction accuracy 

of planting area of winter wheat. The remote sensing 

monitoring diagram of winter wheat LCC spatial 

distribution during different growth periods in the central 

region of Jiangsu Province was mapped by using 

ArcGIS10.3 software to superpose the administrative 

division vector data of Jiangsu Province covering study 

areas (Fig. 3). 

In Fig. 3, winter wheat LCC in the central region of 

Jiangsu Province was mainly 4% – 4.5% at jointing stage, 

4% –5% at booting stage, and 4.5% –5% at anthesis, which 

showed a rising trend from the jointing stage - booting stage 

- anthesis. This result confirmed to the process of winter 

wheat growth and development of material accumulation 

process. With the advance of winter wheat to grain 

maturation, the LCC decreased greatly at later growth stage, 

and leaf chlorophyll conversion was realized. At the same 

time, when LCC was completely transformed at the late 

growth stage, it provided a certain reference for mature 

harvest. Although the study area was in the central region of 

Jiangsu Province, the winter wheat LCC in the northern 

region of Jiangsu Province was higher than that in the 

central region of Jiangsu Province, which indicated that the 

growth of winter wheat in the northern region of Jiangsu 

Province was better than that in the central region. 

 

Discussion 

 

Some researchers prefer to monitor crop growth by multiple 

parameters or composite indicators (Watts et al., 2009; 

Pagola et al., 2012; Tan et al., 2015). Most of them focus on 

single period and could not reflect dynamic changes of crop 

growth parameters. In this paper, winter wheat LCC at 

jointing stage, booting stage and anthesis is analyzed to 

perform dynamic monitoring winter wheat LCC with 

remote sensing images. We have already found sensitive 

remote sensing variables of monitoring winter wheat 

LCC at key growth stages (Fig. 1), which is one of 

highlights of this paper. The jointing stage sees the most 

vigorous growth of winter wheat. Nutrient and water 

management at jointing stage can increase percentage of 

ear bearing (fertile) and spike number per unit area, thus 

laying a good foundation for increasing per unit area 

yield. The booting stage is the key period that 

determines spike number per mu and number of grain 

per spike of winter wheat. Enhancing nutrient, water and 

pest management at booting stage plays an important 

role in increasing the weight of winter wheat spikes, 

preventing premature senility in late winter wheat growth 

period and improving winter wheat quality and output. 

 

 

 
 

Fig. 3: Mappingwinter wheat LCC spatial distribution in 

the central region of Jiangsu Province in different 

periods(Up: Jointing stage; Middle: Booting stage; Below: 

Anthesis) (The figures were made by employing ENVI5.1 

and ArcGIS10.3 softwares) 
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The anthesis, which is the key stage of winter wheat output 

and the high-incidence season of pest damages and 

meteorological disasters, sees the most vigorous metabolism 

and growth of winter wheat, and scientific and reasonable 

nutrient and water control at anthesis has important 

significance to prevent floret degradation, increase setting 

percentage and increase grains per spike. The authors will 

connect different growth periods of winter wheat according 

to LCC increase or reduction range between two adjacent 

periods, aiming to realize dynamic monitoring of winter 

wheat LCC and explore the mechanism of substance 

accumulation. 

At present, the hyper spectral remote sensing 

technique is employed to monitor the LCC, and the spectral 

information of the target object is obtained at the time of 

data acquisition. However, the spectral information is the 

mixed spectrum of all the objects in the receiving range of 

the probe, and the phenomenon of "homologous 

isomorphism" and "foreign matter homology" is easy to 

appear. The canopy image monitoring of crop LCC, based 

on coverage, to the late growth of winter wheat, because of 

complete closure line, can only reflect the canopy 

information, it is difficult to obtain good effect. Tan et al. 

(2012) investigated the fluorescence parameters with the 

combinations of remote sensing vegetation indices 

extracted from hyper spectral data, and achieved good 

results. From this study, it is also found that the LCC of the 

three critical periods has the strongest correlation with 

GNDVI, indicating that the GNDVI will tend to be 

saturated and the vegetation LCC can’t be estimated well. 

In the present study, eight common remote sensing 

vegetation indices were chosen, namely NDVI, NRI, 

GNDVI, SIPI, PSRI, DVI, RVI and EVI. They were 

combined in pairs by difference calculation, ratio 

calculation and normalization calculation. Therefore, a total 

of 28×3=84 combinations were gained to promise diversity 

and reliability. Based on the principle of the strongest 

correlation and above analysis results, N (NDVI，

GNDVI), R (NDVI，GNDVI) and D (NDVI，GNDVI) 

were chosen to monitor LCC at jointing stage, booting 

stage and anthesis, respectively. The monitoring model of 

winter wheat LCC at jointing stage was established by 

linear method (R2=0.702). The monitoring models of 

winter wheat LCC at booting stage was established by 

polynomial method (R2 = 0.684). The monitoring model of 

winter wheat LCC at anthesis was established by 

exponential method (R2 = 0.646). The remote sensing 

vegetation indices combination and the fusion of multiple 

remote sensing spectral variables can reduce the probability 

of over-reliance on a certain variable, which is obviously 

better than the single-band spectral or individual vegetation 

index. 

Previous reports about remote sensing monitoring of 

crop growth were mostly focused on the quantitative 

analysis of remote sensing variables and agronomic 

indicators (Horler et al., 1983; Curran et al., 1990; Clevers 

and Gitelson, 2013; Tan et al., 2015; Amar et al., 2016), 

existing monitoring models involved easily over-reliance on 

a particular remote sensing variable, and failed to cover the 

more remote sensing variables. In this paper, pair remote 

sensing vegetation indices were combined to make more 

remote sensing variables to take part in the quantitative 

analysis, and the massive remote sensing data was limited to 

a certain extent, which reduced the statistical workload. In 

order to improve the accuracy of the model, the mechanism 

and repeatability of remote sensing monitoring were further 

enhanced. The present study assigned geographic 

information to map winter wheat LCC at key growth stages, 

and the quantitative spatial distribution and each grade 

proportion of winter wheat LCC were intuitively shown by 

GIS (Geographic Information System) (Fig. 3), so as to 

indirectly reflect the growth status of winter wheat, provide 

reliable growth information for crop cultivation 

management and develop a series of measures to ensure the 

normal or healthy growth of crop. 

This study is based on HJ-1A/1B images. However, 

extreme weathers easily cause difficulties in surface feature 

recognition and failure of accurate synchronous sampling, 

which will influence accuracy of monitoring LCC models 

directly on large scales. The spectral reflectance extracted 

from satellite images is crop canopy spectra and the mixed 

spectrum, and the spatial resolution of the images is much 

lower than that of the GPS positioning point, which leads to 

the synchronization between the image and the sampling 

points. In the future, further studies will be carried out to 

realize accurate and synchronous monitoring of crop growth 

with remote sensing. In addition, the authors will explore 

the physiological cause of winter wheat spectra changes 

with the growth periods, convert supervision classification 

to decision tree classification based on multi temporal 

vegetation index, study how to eliminate the interference, 

and optimize the extraction method to realize the accurate 

extraction of winter wheat planting area. Moreover, Future 

research should expand the sampling to realize satellite – 

machine (unmanned aerial vehicle, UAV) – ground (in-situ 

spectra) integration, further optimize remote sensing 

monitoring algorithm, synthetically consider the 

complexity of crops and assimilate remote sensing data 

into the crop growth model with agricultural 

meteorological data, soil data, cultivation factors and 

crop varieties information in case of replacing satellite 

image "area" data with "spot" data, and integrate multi-

temporal, multi-dimensional and multi-source remote 

sensing data so as to enhance the applicability and reliability 

of remote sensing monitoring. 

 

Conclusion 
 

All in all, the models based on the remote sensing 

vegetation indices combination can not only increase 

accuracy of monitoring winter wheat LCC at key growth 
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stages, such as N (NDVI, GNDVI), R (NDVI, GNDVI) and 

D (NDVI, GNDVI) were chosen to monitor LCC at jointing 

stage, booting stage and anthesis, respectively but also 

provide a new method for accurately monitoring crop 

growth conditions in the future. 
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