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Abstract 
 

The ecotoxicology of nano-titanium oxide (TiO2-NPs) has been initiated recently but still there is no clarity in the results. The 

objective of this study was to evaluate the response of sub lethal toxicity of nanoparticles of TiO2 on the muscular antioxidant 

system in Clarias gariepinus and the defensive role of both vitamin C and E. Fishes were at random distributed into 5 groups 

and a total 50 fish in each group. Fishes of the first and second group were given 1 and 2 mg/L nano-TiO2 of, respectively. 

Fishes of the third and fourth group were administered with 1 and 2 mg/L TiO2NPs and a mixture of vitamins C and E in a 

dose of 500 mg/kg diet (250 mg of each) and group five was control. After 7 and 15 days of exposure, muscle homogenates 

were prepared for the biochemical determination of lipid peroxides (LPOs), reduced glutathione (GSH) levels and 

SOD, CAT, GR, GPx and GST activities. The mRNA expression levels of SOD, CAT, GR, GPx and GST were 

determined in fish muscle. Fish muscle LPO concentration was significantly decreased while GSH concentration, SOD, 

CAT, GR, GPx and GST activities were significantly decreased in groups exposed to nano-TiO2 as compared to 

control. A significant amelioration in these parameters in groups treated with vitamin C and E. In conclusion, the sub-

lethal doses of nano-TiO2 have the ability to affect the antioxidant system in C. gariepinus and it can be used as a bio-indicator 

for TiO2 toxicity. © 2017 Friends Science Publishers 
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Introduction 

 

Nanotechnology is a rapidly growing field of research. The 

most widely used nanomaterials are silver (Ag), followed by 

carbon, titanium (TiO2), silicon (Si), zinc (Zn) and gold 

(Au) (Meyer et al., 2009; Project on Emerging 

Nanotechnologies, 2013). Few reports indicated that 

nanotechnology may open new avenues in the development 

and the fabrication of products (Roco, 2001; Shah et al., 

2017). Nanoparticles (NPs) have three dimensions with less 

than 100 nm (Stone et al., 2010). Among the NPs, TiO2 are 

one of the most widely used and manufactured in the world 

(Jomini et al., 2015; Mearns et al., 2016) 

Titanium oxide nanoparticles (TiO2-NPs) are widely 

produced in many products (Ahmad et al., 2010) and 

applied for wastewater treatment (Aitken et al., 2006; 

Clemente et al., 2012; Dubey et al., 2015). The number of 

industrial TiO2-NPs is widely increasing in paint industry, 

sunscreens, coatings, toothpaste and food coloring, which 

ultimately ends up in the freshwater ecosystem (Ahmad et 

al., 2010; NNI, 2011). Release of nanoparticles (NPs) into 

aquatic ecosystem have increased through bathing, sewage 

effluent and other engineering applications of NPs 

(Bradford, 1976). TiO2 is available in different forms such 

as anatase (tetragonal), rutile (tetragonal) and brookite 

(orthorhombic). The anatase and rutile have different 

photocatalytic properties (Gaya and Abdullah, 2008). TiO2 

NPs are one of the most abundant materials used in 

nanotechnology, mainly for their photocatalytic activity and 

the absorption (Shao and Schlossman, 1999). The 

mechanisms of NPs toxicity are complex (Bump et al., 

1992). It may stimulate the reactive oxidative species (ROS) 

generation through disruption of intracellular reactions, or 

deteriorate antioxidant system (Culcasi et al., 2012), 

inducing an oxidation of lipids, carbohydrates, proteins and 

DNA Dorval et al. (2003). 

TiO2-NPs was considered as non-harmful to fish, 

however, many researchers discussed the sub-lethal effects 

of nano-TiO2 in fish. Literature reports indicated that it may 

cause oxidative stress and inflammation caused by its sub 

lethal concentration (Federici et al., 2007; Hao et al., 2009; 

Palaniappan and Pramod, 2010). The disproportion between 

the production of free radicals and the antioxidant system in 

fish may also cause oxidative stress (Hwang and Kim, 

2007). TiO2-NPs may induce a biochemical and 

histopathological changes in the liver, gills and intestine 
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(Federici et al., 2007; Hao et al., 2009; Palaniappan and 

Pramod, 2010). The toxicity of TiO2 NPs in juvenile carp 

was documented and manifested by the inhibition of 

superoxide dismutase (SOD), catalase (CAT) and 

Glutathione peroxidase (GPx) activities and reduced 

Glutathione (GSH) content as well as increase in the level of 

lipid peroxides (LPO) (Brown et al., 2004). “Dose 

dependent increase in DNA damage, lipid peroxidation and 

protein carbonylation along with a significant decrease in 

activity of SOD, CAT, GPx levels and total antioxidant 

capacity after exposure with TiO2 NPs (Dubey et al., 2015)”. 

Antioxidants such as vitamin E and C protect cells against 

the effects of oxidative radicals (Hao and Chen, 2009). In 

the biological system vitamin E is considered as one of the 

most effective liposolouble antioxidant (Hao et al., 2009). 

The toxic effects of TiO2 NPs on an antioxidant defense 

system of C. gariepinus are not yet studied, especially at a 

molecular level. 

The study was aimed (i) to assess the disturbance in 

the antioxidant defense system and activities of Glutathione-

S-transferase (GST) activities, gene expression, GSH and 

LPO levels in response to exposure to TiO2 NPs and (ii) to 

test the protective role of antioxidant vitamins C and E was 

also studied to examine their abilities to eradicate the toxic 

effect of these nanoparticles. 

 

Materials and Methods 
 

Preparation and Characterization of Nano-titanium 

Oxide 

 

TiO2 NPs was obtained in the form of nano-powder (Sigma-

Aldrich, 100% anatase, primary particle size b 25 nm, 

99.7% purity; Fig. 1). A stock suspension of 1 g/L of TiO2 

NPs in distilled water was prepared by sonication for 10 min 

(CPX600 Ultrasonic Homogenizer, Cole Parmer, USA) 

operated at 600 W/L and 100% amplitude (Table 1). The 

required volume was prepared under static bioassay 

conditions. The concentration of TiO2 NPs in the exposure 

solution was quantified by inductively coupled plasma mass 

spectrometry (ICP-MS) at zero, 12 and 24 h of exposure to 

verify the exposure concentration is the same as the 

prepared concentrations. Water temperature (28 ± 1oC), pH 

(8.8–9.5) and electrical conductivity (2.80–2.90 mS/cm) 

were maintained at optimal conditions. Fish aquaria was 

continuously aerated, except at the time of feeding, so as the 

level of dissolved oxygen did not drop below 4.0 mg/L. 

 

Preparation of Fish 

 

Live 150 C. gariepinus (weight 95.7±8.5 g, length 15.9±2.9 

cm) were obtained from controlled fish unit. Fishes were 

stocked in 15 glass aquaria (n = 10 individuals/aquaria) in 

70 L glass and water was replaced daily. Fishes were fed 

twice daily @ 3% body weight. All standard guidelines for 

animal care were followed. 

Fish Grouping and Induction TiO2-NPs Toxicity 

 

The fishes were at random distributed into 5 groups. Each 

group was comprised of 30 fishes and stocked in three 

replicates. The 1st was served as control, while 2nd and 3rd 

group were administered to TiO2 NPs of 1 and 2 mg/L, 

4th and 5th were administered with 1 and 2 mg/L of TiO2 

NPs and treated with a mixture of vitamins C and E in a 

dose of 500 mg/Kg diet (250 mg of each) and 5th group 

was as control. After 7 and 15 days of exposure 20 

Fishes of each group were anesthetized on ice. Fishes 

were fasted 24 h before bioassay. The Muscles were 

removed, freeze in liquid nitrogen and stored at–80ºC. 

Standard quality-assurance measures were implemented 

in the laboratory to control. 

 

Biochemical Assays 

 

Sample preparation: Muscle homogenate was 

prepared from each sample without pooling by 

following a method described by Ji et al. (2011) for 

biochemical assays. 

Lipid peroxides (LPO), glutathione GSH and 

antioxidant enzyme activity analysis: Muscle LPO 

products, GSH were quantized by the methods of Kelly et 

al. (1998) and Bradford (1976). SOD, CAT, GR, GPx and 

GST activities in fish muscles were detected according to 

the methods described by Beutler (1969), Esterbauer and 

Cheeseman (1990) and Lawrence and Burk (1979), 

respectively. 

Gene expression and RT-PCR: Muscle CAT, SOD, GR 

and GPx gene expression were quantified using real time 

PCR. RNA was isolated from muscles using the RNeasy 

Mini Kit (Qiagen). For production of cDNA Qiagen Long 

Range 2 Step RT-PCR Kit was used. Primer3 software was 

used for primer design (The Whitehead Institute, 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) 

as per published information, CAT, SOD, GR, GST, GPx 

and β-actin gene sequences (JF801726.1, JF801727.1, 

XM_003445184, EU234530, EF206801 and EU887951), 

respectively. NCBI database for all primers were provided 

by Sigma Aldrich (Sigma-Aldrich, Germany) are shown in 

Table 2. PCR reactions were carried out in a thermal cycler 

(Applied Bio systems Abi Prism-7300 Real Time PCR, 

USA). The quantitative fold increase in genes was 

determined in relation to ß-actin mRNA gene and calculated 

by the 2-DD CT method”. 

 

Statistical Analysis 

 

The data thus obtained was analyzed by one-way analysis of 

variance (ANOVA) to compare the treated groups with 

control by SPSS software (Inc., Chicago, IL, Version 20, 

USA). For inter grouping homogeneity, Duncan's multiple 

range test was used. 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=332321920
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=332321922
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Results 
 

We have observed no mortality in any of the treated groups. 

The activities of antioxidant enzymes, Glutathione (GSH) 

and lipid peroxidase (LPO) levels in the muscle of Clarias 

gariepinus are shown in Fig. 2. The exposure of TiO2 NPs 

induced a significant inhibition (P<0.05) of the activities of 

catalase (CAT), superoxide dismutase (SOD), glutathione 

peroxidase (GPx), glutathione reductase (GR) and 

glutathione-S-transferase (GST) in fish muscles after 

exposure to sub lethal concentration of nano-TiO2 exposed 

groups (2nd and 3rd) compared to the control. The activity of 

GST (Fig. 2) showed an effect of TiO2 NPs in 2nd and 3rd 

group. TiO2NPs induced the production of LPO and 

depleted GSH levels in fish muscles. Supplementation of 

vitamin C and E mixture with nano-TiO2 induced a 

significant induction (p<0.05) of the antioxidant enzyme 

activities and GSH levels in all tissues when compared with 

the respective fishes exposed to TiO2-NPs only but not 

affect LPO levels. In this study alteration in CAT, SOD, 

GPx, GR and GST activities, respectively in the muscle of 

C. gariepinus after exposure to TiO2-NPs was observed. 

The gene expression of SOD, CAT, GR, GPx and 

GST in fish muscle is shown in Fig. 3. The exposure to 

nano-TiO2 caused a significant repression (P<0.05) of the 

relative gene expression of CAT, SOD, GPx, GR and GST 

in all tissues of TiO2-NPs exposed groups when compared 

to their control. Supplementation of vitamin C and E 

mixture with TiO2-NPs causes a significant induction 

(P<0.05) in the antioxidant enzymes and relative gene 

expression in all the tissues as compared with the respective 

fishes exposed to TiO2-NPs only. SOD activity was low in 

control group. 

 

Discussion 
 

The findings of this study showed that TiO2-NPs have a 

great effect on the antioxidant enzyme activities and their 

mRNA expression levels in muscle tissues of C. gariepinus. 

Nanoparticles induce their toxicity through many 

mechanisms; many of nanoparticles have an oxidant power 

through the production of ROS or inhibition of cell 

antioxidant power (Long et al., 2006; Shah et al., 2017). 

There are great inhibitions in the enzyme activities in 

exposed groups 2nd and 3rd compared to control. This proved 

the oxidative stress generated in fish tissues after the 

exposure to TiO2-NPs. The results also showed high levels 

of LPOs in the fish muscles of exposed fishes. Our data 

disagreed with the data obtained from (Moreno et al., 2005). 

Although there is an agreement that NPs in general and 

TiO2-NPs specially induce an oxidative stress in the tissues 

of fish. The antioxidant enzymes were higher in C. 

gariepinus NPs exposed groups, while the reverse 

antioxidant activities were inhibited in exposed groups. In 

our opinion this inhibition was due to the exhaustion of the 

enzyme by the huge quantity of the oxidants generated due 

to exposure of fish to nano-TiO2. 

The mechanism of oxidant particles as the NPs 

convert the endogenous hydrogen peroxides with free 

hydroxyl radicals, which are the cause of ROS generation in 

fish tissue (Musalmah et al., 2002; Jomini et al., 2015). The 

tended toxicity of NPs to its ability to generate oxidative 

stress. SOD is a potent marker for early detection of 

environmental oxidative pollution; its activity was 

significantly reduced in exposed groups when compared 

to the control group. The reduction in SOD activity may 

be used as an indicator for removal of oxidants from 

muscle tissues of C. gariepinus (Moreno et al., 2005). 

Hoa et al. (2009) and they reported a significant decline 

in SOD activities in the brain and gills of carps. Xiong et 

al. (2011) reported a reduction in SOD in liver tissues 

after exposure to TiO2NPs. In the same line, a 

significant decrease in SOD activity was reported in the 

liver of adult Japanese medaka after exposure to nano 

iron (Pabst et al., 1974; Dubey et al., 2015). 

Table 1: Actual Nano-TiO2 concentrations (mg/L) used in 

the exposure water 

 
Concentrations (mg/ L) Time (hours) 

 Zero 12 24 

control ND ND ND 

1 1±0.003 0.96±0.003 0.92±0.001 
2 2±0.005 1.98±0.006 1.95±0.004 

1+vitamins 1±0.003 0.93±0.003 0.90±0.001 

2+vitamins 2±0.004 1.96±0.006 1.93±0.004 

ND= Not detected 
 

Table2: oligonucleotides sequences of primers for 

Catalase, superoxide dismutase, glutathione peroxidase, 

glutathione reducatse, glutathione-S-transferase and ß-actin 

genes 

 
Amplicon size (pb) Reverse 5'->3' Forward  5'->3' Gene 

232 atcttagatgaggcggtgatg atcctgaatgaggaggagcg CAT 
377 atgcgaagtcttccactgtc ggtgccctggagcccta SOD 

180 caggacacgtcattcctacac ccaagagaactgcaagaga GPx 

420 cagttggctcaggatcatttgt cattaccgagacgcggagtt GR 
640 ctctgcgatgtaattcagga taatgggagagggaagatgg GST 

280 aggattccataccaaggaagg caatgagaggttccgttgc ß atin 

 

 
 

Fig. 1: TEM photomicrograph of nano TiO2, which shows 

that the APS is 30±5 nm 
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Fig. 2: Activities of muscle antioxidant enzymes, a; Catalase, b; Superoxide dismutase, c; Glutathione peroxidase, d; 

Glutathione reductase, e; Glutathione-s-treansferase, f; Lipid peroxide and g; Reduced glutathione in control group. (G1), 

TiO2 NPs groups (G2 and G3) and TiO2 NPs with vitamin mixture groups (G4 and G5). Values are expressed as mean ± SD 

(n 20). Significant levels (p<0.05) observed are: a= in comparison to control group, b= when 2 mg TiO2NPs groups versus 

1 mg TiO2NPs groups are compared, c= when TiO2NPs + vitamins groups versus their respective TiO2NPs groups are 

compared.* = when 15 days treated groups compared with their respective 7 days treated groups 

 

 
 

Fig. 3: Muscular relative gene expression of Catalase (a); superoxide dismutase (b); Glutathione peroxidase (c); 

Glutathione reductase (d) and Glutathione-s-transferase (e). Control group (G1), TiO2 NPs groups (G2 and G3) and TiO2 

NPs with vitamin mixture groups (G4 and G5). Values are expressed as mean ± SD (n 5). Significant levels (p<0.05) 

observed are: a= in comparison to control group, b= when 2 mg TiO2NPs groups versus 1 mg TiO2NPs groups are 

compared, c= when TiO2NPs + vitamins groups versus their respective TiO2NPs groups are compared.* = when 15 days 

treated groups compared with their respective 7 days treated groups 
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 CAT and GPx are two enzymes found in 

peroxisomes and are responsible for the removal of 

H2O2 and preventing an accumulation of more oxidants 

in tissues, their reactions come at the expense of GSH 

(Pasceo et al., 1987). GR act as a regenerator of GSH to 

close the cycle and remove H2O2. 

The activities of CAT, GPx and GR, GST activities 

and gene expression were reduced in nano-TiO2 exposed 

groups when compared with control (Fig. 3). GPx was 

found more sensitive to H2O2 than CAT (Puerto et al., 2009). 

GSH is as an antioxidant that eradicates many toxic oxidant 

agents through its SH group and H2 donor of GPx catalyzing 

H2O2 reduction bio-reactions (Ramesh et al., 2013). Our 

results indicated a significant decrease in GSH 

concentration in the muscles of fishes exposed to TiO2 NPs. 

Similar findings were reported by Li et al. (2009) and Xiong 

et al. (2011). It estimated through measuring the content of 

Malondialdehyde (MDA) (Puerto et al., 2009). LPOs level 

was increased in the muscles of the nano-TiO2 exposed fish 

groups, suggesting that under the stress induced by TiO2 

NPs. The activities of enzymes SOD, CAT, GPx GR and 

GST were reduced the matter, which reduces the antioxidant 

power in the cells and generate more and more oxidants lead 

to a massive increase in LPO. LPOs products of lipid 

oxidative damage may be used as bio-indicator for the 

oxidative stresses (Sayeed et al., 2003). In fact, the increase 

in LPO is occurring gradually according to the exposure 

manner and dose. Tian et al. (2010) found that exposure to 

TiO2 NPs led to increase in LPO level in zebra fish embryos. 

Xiong et al. (2011) and Wise et al. (2010) argued that it 

does takes place in two ways; first by unsaturated fatty acid 

interaction and second by preserving the protein peptide 

chains. In addition, it scavenges O2, H2O2 and (OH-) radicals 

and (O-) radicals in the same way, vitamin C scavenges O2 

and (OH-) and (O-) radicals (Xiong et al., 2011). Vitamin E 

protects all cell wall, nucleus, endoplasmic reticulum and 

mitochondria, while vitamin C acts in the cytoplasm and 

lysosomes (Zhang et al., 2008). A significant neutralization 

in the antioxidant system C. gariepinus, activities of SOD, 

CAT, GPx and GR and GST started to be returning to 

normal activities as in control with an amelioration in GSH 

level and a reduction in LPO level in all fishes 

supplemented with vitamin E and C mixture. This confirms 

the ability of two vitamins to fight with an oxidative damage 

caused by TiO2 NPs exposure. 

 

Conclusion 

 

Sub-lethal doses of TiO2 NPs have the ability to affect the 

antioxidant system in C. gariepinus. The results of this 

study indicated that the specific activity of CAT, GPx and 

GR, GST could be used as a biomarkers, since they exhibit 

biochemical and genetic changes in fish exposed to TiO2 

NPs. Vitamin C and E have the ability to ameliorate the 

toxic effects of TiO2 NPs on the antioxidant system in C. 

gariepinus. 
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