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Abstract 
 

Powdery mildew is one of the most widely destructive plant diseases, particularly infecting winter wheat. Early detection of 

wheat powdery mildew is of importance, which is useful to reduce economic costs and environmental pollution. However, 

difficulties emerge at early development stages, due to slight variations of the characteristic symptoms. Fortunately, 

hyperspectral reflectance imaging has been proven as a powerful tool to detecting early disease severity in plant. In this study, 

hyperspectral imagery data of leaves were acquired at early stages of the disease in winter wheat. It was demonstrated that 

early powdery mildew could induce observable spectral changes in both visible and near infrared regions. Given that, powdery 

mildew indices (PMI) were constructed and showed the capability of distinguishing between normal and diseased leaves, 

although it displayed poor effects for differentiating disease-damaged levels of early powdery mildew and estimating disease 

severity. However, further study was carried out by combination of hyperspectral vegetation indices closely related to plant 

diseases. It was noticeable that the model of three indices of PRI, PSRI and ARI significantly increased the classification 

accuracy of various early disease levels, and the regression model of PMI, PSRI and ARI apparently improved the estimation 

accuracy of disease severity. These valuable results could be used to prevent the development and the spread of the disease, 

and particularly beneficial to develop a portable or automated sensor in precision agriculture. © 2018 Friends Science 

Publishers 

 

Keywords: Wheat powdery mildew; Hyperspectral imaging; Spectral disease index; Early detection 

 

Introduction 

 

Wheat powdery mildew is one of the major diseases 

affecting the worldwide wheat production nowadays, which 

reduces the plant photosynthetic ability, lowers productivity 

and poor grain quality (Zhang et al., 2012; Ray et al., 2017). 

The detection and differentiation of powdery mildew at 

early stages not only allow timely treatment, resulting in 

limited yield loss and reducing fungicides usage, but also 

offer an optimal timing for fungicide application and avoid 

the build-up of resistance (Sankaran et al., 2010; Jafari et al., 

2016). Therefore, it is important to identify and quantify 

early stress responses before irreversible damages occur. 

The disease mainly affects leaves of wheat. The 

characteristic symptoms at early development stages are the 

initial formation of scattered white filamentous mildew on 

the leaf surface, probably 1‒2 mm white mildew. These 

unobvious variations are challenge to early detection of the 

powdery mildew. 

The traditional detecting way of the disease is 

expensive and inefficient. Due to shorter time from early 

warning to prevention and treatment, the method could 

directly delay the best disease prevention opportunity. 

However, remote sensing technology is a powerful tool for 

effectively detecting and diagnosing powdery mildew, due 

to its advantages including fast, real-time and non-

destructive monitor (Mahlein et al., 2012a, b; Yuan et al., 

2014; De Castro et al., 2015; Martinelli et al., 2015). Zhang 

et al. (2012) analyzed spectral changes and extracted 

various spectral features of infected leaves by vegetation 

indices and the continuous wavelet method. Huang et al. 

(2013) also compared sensitive wavebands of the first, 

second and third leaf in the whole wheat plant using 

correlation coefficient and continuous wavelet transform 

methods in detail. Cao et al. (2013) demonstrated that 

canopy hyperspectral reflectance can be an efficient way for 

wheat powdery mildew detection without other stresses 

resulting in unhealthy symptoms. To rapidly and precisely 
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distinguish powdery mildew from other diseases, Huang et 

al. (2014) constructed a powdery mildew index (PMI) based 

on hyperspectral data measured with a spectroradiometer, 

which had the classification accuracy of 86.5% for healthy 

leaves and leaves infected with powdery mildew and good 

correlation with the disease index. These studies mainly 

used visible and infrared spectroscopy for detecting 

powdery mildew in wheat after medium-term developing 

stages of the disease. Symptoms of the disease are obvious 

and highly visible at later stages, which can result in spectral 

changes in visible/NIR ranges captured by hyperspectral 

spectrometers. Non-imaging hyperspectral sensors measure 

the spectral reflectance at a single circular measurement spot, 

which always represents the mean of the reflectance of 

healthy and diseased plant tissue (de Jong et al., 2012). If 

varying surface characteristics exist in the spot, the 

physically averaged reflectance contains diseased and non-

diseased information. This indicates that minor changes in 

leaf reflectance will be weakened by averaging way at early 

infection stages (Behmann et al., 2014). A precise 

classification is very complicated at early stages or in the 

case that only few pustules occur. This is due to the fungal 

tissue on the leaf surface shifting the spectral signature like 

a dusty coat (Rumpf et al., 2010). However, imaging sensor 

systems consist of pixels, which make it easy to identify a 

pixel wise attribution of disease specific symptoms and 

tissue (Steiner et al., 2008; Rumpf et al., 2010). Chaerle and 

van der Straeten (2000) reported that imaging 

hyperspectral sensors can improve hyperspectral disease 

detection through a better understanding of the pathogen 

host interactions. Previous studies also indicated that 

hyperspectral imaging techniques could be more robust in 

disease detection in plant diseases than spectroscopic 

methods alone, particularly at early infection stages (Del 

Fiore et al., 2010; Sankaran et al., 2010; Behmann et al., 

2014; Jafari et al., 2016). 

Therefore, this study focused on detection of wheat 

powdery mildew at early stages. The main objectives of this 

study were to: (1) examine spectral response of the early 

disease in visible and NIR ranges based on imaging data, (2) 

construct PMIs for early powdery mildew and investigate its 

sensitivity to the early disease (3) combine PMIs with 

several hyperspectral vegetation indices closely related to 

diseases for detective ability of early powdery mildew and 

evaluate them. 

 

Materials and Methods 
 

Study Site and Leaf Sampling 

 

The experimental field located at Beijing Academy of 

Agriculture and Forestry Science, China (39°56ˈN, 

116°16ˈE). The cultivar of winter wheat was „jingshuang 

16‟, which was widely grown and is highly susceptible to 

powdery mildew. Wheat powdery mildew can occur on 

different growth stages, however, the disease at lately 

booting stage spread rapidly under appropriate natural 

environment, so that this growth stage was regarded as early 

infected moment of wheat powdery mildew in this study. 

Meanwhile, to provide important support to conduct 

preventive procedure such as fungicide spray, we performed 

the experiments at the period of filling stage. 

Leaf samples were collected in the field and rapidly 

transported to a nearby indoor laboratory for imaging 

spectrometer data measurements. In this process, a water 

loss and cross contamination in leaves was reduced to the 

minimum as much as possible. The detail method was found 

in Zhang et al. (2012). A total of 70 leaf samples were 

collected for measurement, including 28 normal leaves and 

42 diseased leaves with different slight severity. 
 

Hyperspectral Imaging Systems 
 

Imaging spectrometer data of leaves were acquired by the 

customized visible and near-infrared hyperspectral imaging 

system. The components of the system have been showed in 

Fig. 1. The spectral range of the system is between 400‒

1000 nm. The sampling interval of the spectrum is about 0.8 

nm and the spectral resolution is 2.8 nm. The CCD camera 

has high sensitivity in the visible/near infrared region and a 

wide dynamic range of 12-bit digital output. The 

illumination consisted of two halogen lamps fixed by the 

angle of 45° and adjustable height to make sure leaves under 

uniform and even light. The object distance and the 

exposure time were respectively set at 410 mm and 90 ms 

during measurement process to prevent images from being 

blurred or deformed (Yang et al., 2015). 
 

Image Acquisition and Calibration 
 

Imaging spectrometer data of winter wheat leaves was 

collected by the above hyperspectral imaging system. The 

samples passed its view slot by the electric moving stage 

when the CCD camera was fixed over the stage. In this 

process, there were appropriate intensity of illumination and 

exposure time of the camera. Then, the images were 

acquired line-by-line. 

Due to the different spectral response of the 

spectrometer in the VIS/NIR region, there was the influence 

of the internal dark current when the operating temperature 

is too low/high. This resulted in large image noises in 

the wavebands with weak spectral response. Therefore, 

spectral calibration was performed for the dark current 

correction to eliminate parts of the data noises using the 

following formula:  
 

BW

BI
I




 0

                                                              (1) 
 

Where, I and Io are the relative and original 

reflectance intensity of each wavelength, respectively, B is 

the intensity of the dark current, W is the reflectance 

intensity of the standard white board. 
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Data Preprocessing 
 

The normalized reflectance was computed to suppress 

environmental noises (Pu et al., 2008). A band reflectance 

was replaced with the following formula:  
 

)( 1'

N

N

i i

ii

 



                                                   (2) 

 

Where,   
  is the normalization value,    is the original 

reflectance, and N is the number of waveband. 
 

Determination of Disease Index 
 

The disease index (DI) was used to describe the infected 

severity of powdery mildew. The DI of each leaf sample 

was determined by two processes. Firstly, the severity of 

wheat powdery mildew was estimated by computer 

calculation and visual judgment of a percentage of an 

infected leaf surface area on the blade. Secondly, the 

estimated severity was divided into 4 categories to minimize 

human error for obtaining the disease index (DI), referring 

to Chinese Standard (NY/T 613-2002):0‒3% (no disease), 

3‒10% (DI=1), 10.1‒20% (DI=2), 20.1‒30% (DI=3). DI 

was taken as a continuous variable in subsequent regression 

analysis. In addition, two discrete levels for the disease 

severity of leaves were used for subsequent discrimination 

analysis. These categories are very slight disease (the 

lesion percentage ranging from 5% to 15%) and slight 

disease (the lesion percentage ranging from 15% to 

30%). 
 

Analytical Methods 
 

The construction of PMI based on the RELIEF-F 

algorithm: Spectral indices can effectively identify specific 

plant diseases (Mahlein et al., 2013). In this study, the 

powdery – mildew index (PMI) was constructed by the 

RELIEF-F algorithm proposed by Huang et al. (2014). 

The RELIEF-F algorithm was designed to measure 

how well attributes distinguished between instances within 

the close proximity of each other (Kira and Rendell, 1992; 

Robnik-Sikonja and Kononenko, 2003). Therefore, the 

algorithm was useful in finding some wavelengths for 

specific diseases. It can deal with more than two class 

problems, particularly incomplete and noisy data. Its ability 

to select features depends on the number of nearest 

neighbors (k). For a fixed k, the set of k nearest 

neighbors of the same class or a different class were 

deemed a “hit” or a “miss” (Kira and Rendell, 1992; 

Mahlein et al., 2013). According to attributes of response 

vector, the RELIEF algorithm can be used for classification 

or regression analysis. 

PMI consisted of a relevant single wavelength and a 

normalized wavelength difference. It was shown as the 

following formula:  
 

3

21

21 5.0 R
RR

RR
PMI 






                                           (3) 
 

Where, R1 and R2 are reflectance in normalized 

wavelengths, R3 is reflectance in the most relevant single 

wavelength. 

The most relevant single wavelength and normalized 

wavelengths were obtained by the RELIEF-F algorithm. 

According to Huang et al. (2014), the most sensitive single 

wavelength was among wavelengths of the highest 

weighted (20%). Two normalized wavelengths were 

wavelengths from the best and worst weighted wavelengths 

(10%), respectively. And the distance between the two 

wavelengths was less than 50 nm. 
 

Other Hyperspectral Vegetation Indices Compared to 

PMI 
 

To conduct a thorough comparison with PMI in disease 

detection, a total of 11 hyperspectral vegetation indices 

were included and examined (Table 1). These 

hyperspectral indices have been evaluated to be useful 

for disease detection or have a potential in detecting 

stress (Mahlein et al., 2013). 
 

Discrimination Analysis of Disease Severity by Spectral 

Indices 
 

Discriminant models for differentiating disease levels 

were constructed using Fisher linear discriminate 

analysis (FLDA) based on PMI and selected spectral 

indices with high sensitivity to disease severity, 

separately. To examine the sensitivity of these spectral 

indices in detecting the powdery mildew, Wilks‟ lambda 

was applied to select optimal spectral indices when PMI 

and other hyperspectral indices were independents.  

 
 

Fig. 1: The hyperspectral imaging system is consisted of: 

(1) CCD camera; (2) imaging spectrograph; (3) lens; (4) 

light source; (5) sample stage; (6) electric moving stage; (7) 

computer; (8) light source controller; (9) moving stage 

controller; (10) dark room 

javascript:openDSC(41955798,%2037,%20'970');
javascript:openDSC(41955798,%2037,%20'970');
javascript:openDSC(41955798,%2037,%20'970');
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The criterion of variables for entry or removal is probability 

of F value. Finally, four statistics were selected to evaluate 

the discriminant model: overall accuracy (OAA), producer‟s 

accuracy, user‟s accuracy, and kappa coefficient. 
 

Estimation of Disease Severity by Spectral Indices 
 

In addition to the discrimination among different disease 

levels, two regression models were constructed for 

estimating DI, One of which was based on PMI while the 

other one was based on optimal spectral features. To 

establish the regressive model between DI and optimal 

spectral features, multiple stepwise regression analysis was 

applied for estimating DI. This algorithm first uses the 

stepwise method to determine how many independent 

variables are entered into the analysis by probability of F 

value. Finally, the multivariate model was constructed 

according to selected spectral indices. The coefficient of 

determination (R
2
) and the relative root mean square error 

(RMSE) were used for evaluating the performance of 

models. In this study, FLDA analysis and multiple stepwise 

regression analysis were implemented in SPSS 20.0. 

 

Results 

 

Leaf Spectral Characteristics of Winter Wheat under 

Early Powdery Mildew Stress 

 

Based on three different severity classes on early powdery 

mildew specified as described, Fig. 2 shows curves of 

normalized spectra and first-derivative spectra. The shapes 

of spectral curves of normal and diseased leaves for 

normalized spectra and derivative spectra were similar, but 

several differences existed in specific wavelength ranges 

among the three disease severity categories (Fig. 2a and b). 

At 450−700 nm, the reflectance value of normal leaf in red 

edge region had minimal value, followed by very slight and 

slight leaves had the highest value. At 750−1000 nm, 

normal leaves had highest reflectance value, followed by 

very slight leaves and slight leaves had lowest reflectance 

value. The more serious the disease was, the higher 

reflectance of leaves was in the visible region, but the 

result was the opposite in the near-infrared region. 

These results were consistent with previous studies in 

metaphase of powdery mildew (Zhang et al., 2012; Huang 

et al., 2013). However, Fig. 2b showed that differences of 

the first derivative spectra between normal and diseased 

leaves were significant in the red edge region from 690 to 

740 nm, but not obvious in the green edge region from 510 

to 530 nm. This may be related to minor damages in plants 

at early developing stages of the disease. 
 

Detection of Early Powdery Mildew Stress by the 

Powdery Mildew Index (PMI) 
 

Discrimination analysis with PMI: The RELIEF-F 

algorithm was one of feature selection algorithms, 

Table 1: Commonly used hyperspectral vegetation indices for plant disease detection 

 
Indices Definition Description or formula Literatures 

NBNDVI Narrow-band normalised difference vegetation index (R850 - R680)/ (R850 + R680) Thenkabail et al. (2000) 

NRI Nitrogen reflectance index (R570 - R670)/ (R570 + R670) Filella et al. (1995) 

TVI Triangular vegetation index 0.5[120(R750-R550)-200(R670 - R550)] Broge and Leblanc (2001) 
PRI Photochemical/Physiological Reflectance Index (R531 - R570)/ (R531 + R570) Gamon et al. (1992) 

PhRI The Physiological Reflectance Index (R550 - R531)/ (R550 + R531) Gamon et al. (1992) 

CARI Chlorophyll absorption ratio index (| (a670 + R670 + b) |/ (a2 + 1)1/2) - (R700/R670) a 
= (R700 - R550)/150, b = R550 - (a - 550) 

Kim et al. (1994) 

TCARI The transformed chlorophyll absorption and reflectance index 3[(R700 - R670) - 0.2(R700 - R550) (R700/R670)] Haboudane et al. (2004) 

MCARI Modified chlorophyll absorption ratio index [(R701 - R671) - 0.2(R701 - R549)]/(R701/R671) Daughtry et al. (2000) 
RVSI Red-Edge Vegetation Stress Index [(R712 + R752)/2] - R732 Merton and Huntington (1999) 

PSRI Plant Senescence Reflectance Index (R680 - R500)/R750 Merzlyak et al. (1999) 

ARI Anthocyanin Reflectance Index (R550)-1 - (R700)-1 Gitelson et al.(2001) 

 

 
 

Fig. 2: Curves of normalized spectra, first derivative 

spectra and normalized reflectance ratios of diseased leaf 

spectra to normal spectrum. (a) Normalized reflectance 

curves of normal, very slightly-damaged (3% < lesion 

portion < 15%) and slightly-damaged leaves (15% lesion 

portion 30%); (b) first derivative spectral curves of normal 

and diseased leaves 
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which determined importance of attributes by computing 

ranks and weights of attributes for classification and 

regression. Fig. 3 illustrates single wavelength weights for 

discrimination analysis with two severity classes and three 

severity classes. These two weight curves had similar shape 

and basically identical waveband position for some 

peaks/valleys, only differed in weight values. This was 

attributed to small difference between diseased levels at 

early stage of powdery mildew. As shown in Fig. 3, single 

wavelengths around 690, 820, and 910 nm had high 

relevance to diseased winter wheat leaves, and the 

normalized reflectance differences were around 445 and 680 

nm. All possible wavelength combinations were calculated 

for the specific spectral index by the RELIEF-F algorithm. 

Finally, the most relevant single wavelengths for two 

disease levels and three disease levels were 836 nm and 685 

nm, respectively. But the wavelengths for computing 

normalized wavelength difference were same, including 687 

nm and 446 nm. Two powdery – mildew indices were 

proposed based on above wavelengths (Table 1). 

For evaluating the ability of PMI for differentiating 

disease levels, the discriminant analysis models for these 

two systems of severity classification were established. The 

classification results with cross validation approach were 

listed in Table 2a, b. The classification accuracy and the 

Kappa indices of PMI for the two health levels were 0.89 

and 0.77, respectively. In addition, it is noticeable that 

producer‟s and user‟s accuracies for the PM-infected class 

were both more than 80%. These results were in agreement 

with Huang et al. (2013). However, the model for 

distinguishing three healthy levels can also yield an 

acceptable accuracy, although its classification accuracy is 

not as high as that for the two health levels. But smaller 

producer‟s and user‟s accuracies were achieved for the very 

slightly-damaged class and the slightly-damaged class with 

the discriminant model for the three health levels compared 

to the other levels. These results showed that the PMI were 

able to distinguish between healthy and PM-infected leaves 

with good reliability, although discriminant accuracies for 

the very slightly-damaged level and the slightly-damaged 

level may be further increased by addition of other spectral 

features in the model. 

 

Regression Analysis with PMI 

 

Other than determining the disease severity levels of 

leaves by discrimination analysis, we also attempted to 

estimate the DI value in a continuous manner by 

regressive models with PMI. In order to find proper 

wavelengths for PMI construction estimated DI, the 

RELIEF algorithm was performed in a way of regression 

analysis. The curve of single wavelength weights was 

shown in Fig. 3. It revealed that the shape of the curve was 

similar to those for classification analysis, which is due 

to small number of disease severity levels. However, 

features of peaks/valleys between curves were different. 

Finally, PMI for estimating DI was adopted based on 

reflectance at 913 nm and normalized reflectance difference 

between 443 and 686 nm. Then, statistical correlation 

analysis was carried out between the PMI and the DI, and 

the linear regression model with PMI was established (Fig. 

4). It was found that the DI has significant positive 

correlation to the PMI (R
2
=0.798, n=70). This indicated that 

the PMI showed potential for monitoring the early severity 

of powdery mildew. 
 

Detection of Early Powdery Mildew Stress by a 

Combination of PMI and Hyperspectral Vegetation 

Indices 
 

Discrimination analysis with optimal spectral indices: 

Apart from examining the ability of PMI for discriminating 

disease severity and estimating disease index (DI), the 

detective analysis of early powdery mildew stress was 

performed based spectral features PMI combined with other 

hyperspectral vegetation indices, which will show 

comparison among these indices. Table 2a, b showed that 

probability of F and Wilks‟ lambda of all spectral indices for 

two classification systems in the process of stepwise 

discriminant analysis, which can be interpreted as their 

sensitivity to the disease severity levels. It is easy to see 

that there were different numbers of optimal spectral 

features chosen as sensitive variables into discriminant 

models in two classification systems, according to 

probability of F and Wilks‟ lambda.  

 
 

Fig. 3: Single wavelength weights for discrimination 

analysis with two severity classes and three severity classes 

and regression analysis of PMI with disease severity 
 

 
 

Fig. 4: Scatter plots between measured DI and estimated 

DI for the regression model with PMI 



 

Detection of Early Wheat Powdery Mildew / Int. J. Agric. Biol., Vol. 20, No. 9, 2018 

 1975 

For the two-class system, the two indices of PRI and 

ARI were as predictor variables into the identification 

model. However, for the three-class system the index 

PSRI was chosen to enter the discriminant mode in 

addition to PRI and ARI. 

Meanwhile, it is apparent that PMI was not chosen as 

one of the best spectral features when PMI and other 11 

hyperspectral vegetation indices were alternative indices for 

discriminant models. However, subtle differences were 

viewed from classification accuracies for models (Table 3). 

For the two-class system, the overall accuracy and the 

Kappa indices of the model with PRI and ARI were 

basically the same as those of the model with PMI, although 

small differences were shown in producer‟s and user‟s 

accuracies. This indicated that PMI can be better contributed 

to the development of a portable sensor for precision 

agriculture, compared to PRI and ARI. But for the three-

class system, the overall accuracy and the Kappa indices of 

the model with PRI, PSRI and ARI were higher than those 

of the model with PMI. Obviously, this was due to the 

significant increase of producer‟s accuracies for the very 

slightly-damaged level and the slightly-damaged level. 

This implied that the combination of the three indices of 

PRI, PSRI and ARI had the better distinguishing 

capability for the very slightly-damaged level and the 

slightly-damaged level. 

 

Regression Analysis with Optimal Spectral Indices 

 

To compare the estimating ability of disease index between 

PMI and other hyperspectral vegetation indices, Table 4 

summarized the results of correlation analysis between each 

of the 12 spectral features and DI of the 70 samples. It 

turned out that ten indices significantly correlated with DI 

(p-value < 0.05). Of them, four indices had an absolute R 

value which is over 0.8. They were PMI, NBNDVI, ARI 

and PSRI, of which PMI had the highest R value. This 

indicated that PMI had powerful sensitivity to leaf powdery 

mildew. In order to further determine optimal spectral 

indices, the stepwise method was used to select variables for 

the multivariate model. Table 5 displayed the related 

variables and their coefficients for the model. Spectral 

features selected were PMI, PSRI and ARI. The relative 

RMSE and R square were 0.41 and 0.86, respectively (Fig. 

5). To some extent, the estimating accuracy for DI was 

improved by addition of PSRI and ARI. 

Table 2a: The classification accuracies created based on cross validation approach for discriminant models with PMI 
 

Samples P.′s.a (%) U.′s.a (%) OAA κ PMI formula 

Two classes 

Healthy 96.43 84.38 0.89 0.77 𝑅687−𝑅446

𝑅687+𝑅446
-0.5R836 

Powdery mildew 83.33 92.11 
  Three classes 

Normal 92.86 86.67 0.81 0.71 𝑅687−𝑅446

𝑅687+𝑅446
-0.5R685 

very slight 74.07 76.92 
slight 73.33 78.57 

 

Table 2b: Probability of F and Wilks‟s Lambda of all variables in stepwise discriminant analysis for 2-class system and 3-

class system 
 

Indices Probability of F  Wilks' Lambda Indices Probability of F Wilks' Lambda 

2-class system 3-class system 2-class system 3-class system 2-class system 3-class system 2-class system 3-class system 

NBNDVI .339 .648 .350 .153 ICARI .505 .141 .350 .146 

NRI .794 .101 .355 .144 MCARI .395 .287 .351 .149 

TVI .434 .629 .352 .153 RVSI .122 .310 .343 .150 

PRI .049 .006 .377 .182 PSRI .837 .006 .355 .181 

PhRI .710 .220 .355 .148 ARI .000 .000 .652 .285 
CARI .367 .156 .351 .146 PMI .743 .446 .355 .151 

 
Table 3: The classification accuracies created based on 

cross validation approach for discriminant models with 

optimal spectral indices 
 

Samples P.′s.a (%) U.′s.a (%) OAA κ Best spectral features 

Two classes 

Healthy 92.86 81.25 0.89 0.77 PRI,ARI 
Powdery mildew 85.71 94.74 

  Three classes 

Normal 92.86 89.66 0.87 0.80  PRI,PSRI,ARI 
very slight 85.19 82.14 

slight 80.00  92.31 

 

Table 4: Summary of correlation analysis between spectral 

features and DI 
 

Rank Indices R R2 Significance (p-value) 

1 PMI 0.893 0.798 0.000 

2 NBNDVI -0.860 0.740 0.000 

3 ARI 0.854 0.729 0.000 
4 PSRI 0.835 0.697 0.000 

5 TVI -0.766 0.587 0.000 

6 MCARI 0.759 0.576 0.000 
7 PRI -0.758 0.575 0.000 

8 CARI 0.724 0.524 0.000 

9 TCARI 0.572 0.327 0.000 
10 RVSI 0.564 0.318 0.000 

11 PhRI 0.216 0.047 0.073 

12 NRI -0.169 0.029 0.162 
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Discussion 
 

In the hyperspectral imaging, a leaf is scanned for a set of 

pixels. The resulting information simultaneously includes 

imagery and spectrum (West et al., 2003; Govender et al., 

2009). Therefore, we can acquire reflectance data for any 

region of interest in a leaf, e.g. whiting spots in leaves. In 

our study, Fig. 2 showed spectral responses of early 

powdery mildew based on leaf imaging data. Compared 

with spectral characteristics of powdery mildew after 

medium-term of the disease (Zhang et al., 2012; Huang et 

al., 2013, 2014) It was found that variation laws of 

reflectance with disease severity in the visible and near-

infrared (NIR) regions were similar, but reflectance 

differences between normal and diseased leaves were not as 

obvious as those at the middle and late stages. Moreover, 

our study pointed out that the spectral reflectance in the 

range of 500‒740 nm, responded significantly to powdery 

mildew, with the “blue shifting” phenomenon. These 

spectral changes may be due to the breakdown of 

chlorophyll pigments, the powder on the leaf‟s surface and 

subsequent changes of other pigments in diseased leaves as 

well as the breakdown of the cell structure (West et al., 

2003; Sankaran et al., 2010; Zhang et al., 2012). In addition, 

small spectral differences between normal and diseased 

leaves may result from less obvious symptoms at early stage 

than those after the time. Wheat leaves are mainly 

influenced by powdery mildew. The early symptoms are the 

initial formation of scattered white filamentous mildew on 

the leaf surface, probably 1‒2 mm white mildew. Then, 

infected parts of leaves often turn yellow leaf and blight. 

With time elapsing after leaves were inoculated, the disease 

severity of leaves becomes explicit. 

Based on spectral responses of early powdery mildew, 

a new hyperspectral index for detection of powdery mildew 

was constructed by RELIEF-F algorithm. This can be 

contributed to development of portable disease-detected 

sensors, which offers an optimal timing for fungicide 

application in crop management and reduce loss of crop 

yield. According to weights of wavelengths, a single 

wavelength and a normalized wavelength difference were 

thoroughly searched for the best weighted combination. 

Whether discrimination or regression analysis, normalized 

wavelength differences for detection of early powdery 

mildew were all located around 446 and 687 nm, whereas 

single wavelengths of high relevance were different, the 

former was 836 nm with two-class system and 685 nm with 

three-class system, the latter was 913 nm. For 

discrimination and regression analysis, the PMIs for 

detection of early powdery mildew mainly used three 

narrow bands in the red, blue and NIR region (i.e. 446 nm, 

687 nm, 685 nm, 836 nm and 913 nm), which were 

associated with variations of plant pigment and the change 

of plant cell structures. The result was corresponding to 

spectral response of early powdery mildew. However, this 

was not consistent with that after medium-term stages of the 

disease, of which PMI was mainly located in the green edge 

and red edge (Mahlein et al., 2013; Huang et al., 2014). 

Table 1 and Fig. 4 illustrated the distinguishing and 

estimating ability of PMI for powdery mildew, respectively. 

Classification by the PMI resulted in a very good 

discrimination between powdery mildew and healthy wheat 

leaves. However, difficulties remained in the identification 

of very slight and slight powdery mildew infection. Other 

researchers also demonstrated that at disease severities 

below 25% the classification error was high, due to minor 

changes in leaf reflectance at early infection stages (Mahlein 

et al., 2013). A significant positive correlation was found 

between the DI and the PMI, which was in agreement with 

Huang et al (2014). But low RMSE indicated that the 

combination of PMI with other hyperspectral indices could 

further improve accuracy of estimating severity of powdery 

mildew at early stages. 

Each spectral region in hyperspectral images provides 

unique information about the plant. It is known that the 

visible and infrared regions of the electromagnetic spectra 

have close connection with the physiological stress levels in 

the plants (Muhammed, 2002, 2005; Xu et al., 2007). 

Therefore, some of these wavebands can be used to detect 

plant diseases (West et al., 2003), even before the symptoms 

are visible (Sankaran et al., 2010). Therefore, 11 

hyperspectral indices, reflecting physiological changes 

induced by plant diseases, were selected and used for 

discriminant and regression analysis of powdery mildew, 

together with PMI. Compared to the influence of individual 

PMI, to some extent, the addition of other indices improved 

detective accuracies of powdery mildew. The results of 

FDA implied that PMI had similar effect to the indices 

of PRI and ARI for classification of two disease levels, 

Table 5: Coefficients of variables in multivariate 

regression model* 

 
variables Coefficients T Sig. 

PMI 8.120  4.297  0.000  
PSRI 52.040  3.828  0.000  

ARI 3.510  3.321  0.001  

Constant 9.586  5.923  0.000  

*: 95% confidence interval for coefficient; t statistics and two-tailed 
probability of t 

 

 
 

Fig. 5: Scatter plots between measured DI and estimated 

DI for the regression model with optimal vegetation indices 
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but the combination of PRI, ARI and PSRI significantly 

increased identifying accuracies of leaves with low disease 

severities. Furthermore, the synthesis of PMI, PSRI and 

ARI can apparently decrease the estimating error of DI. For 

these results, it was easy to see that PMI was not chosen for 

a sensitive index in the three-class system. This could be 

related to various pigment changes in leaves early infected, 

such as chlorophyll, carotenoid and anthocyanin, which 

result in spectral variations in 530‒570 nm spectral range. 

These wavelengths were included in indices of PRI and ARI, 

but not in PMI. The Photochemical Reflectance Index (PRI) 

could remotely assess photosynthetic efficiency at leaf scale, 

while Anthocyanin Reflectance Index (ARI) is closely 

related to anthocyanin content (Garbulsky et al., 2011; 

Luo et al., 2012). 

 

Conclusion 

 

This study found that early powdery mildew could result in 

observable spectral changes in both VIS/NIR regions, which 

make remote sensing detection of the early disease possible. 

Effective wavelengths or simple vegetation indices can be 

contributed to development of a portable or automated 

hyperspectral imaging device. Powdery mildew index (PMI) 

was constructed and showed significant capability of 

identifying diseased leaves from healthy leaves, although it 

had low classification accuracy for differentiating disease-

damaged levels of early powdery mildew and low 

estimating accuracy for disease severity. However, 

accuracies of models improved with combination of other 

hyperspectral indices. It was indicated that the 

distinguishing model with the two indices of PRI and ARI 

has similar effect to that with PMI in two-class system of 

disease and health, but the model with the three indices of 

PRI, PSRI and ARI had significantly higher classification 

accuracy than that with PMI in three-class system of very 

slightly-damaged, slightly-damaged and healthy levels. 
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