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Abstract 
 

To investigate the toxic effects of Cd on seedling growth parameters and mineral nutrients, and the impact of SA in the 

alleviation of Cd toxicity in four basmati rice genotypes (Basmati-198, Basmati-370, Basmati-2000 and Kashmir Basmati), the 

pot experiment was conducted in sand-filled pots under normal temperature (28±2ºC). After germination, the seedlings were 

subjected to 0, 100, 500, 1000 and 1500 µM of Cd concentrations. The results showed reductions in different seedling growth 

attributes and the mineral nutrients at different Cd regimes. When SA was applied alone in the medium, no change in root Cd 

or slight reduction in shoot Cd revealed the protective effect of SA against subsequent Cd toxicity that might be ascribed to the 

inhibition of Cd uptake. However, with the elevating Cd stress, SA reduced the root or shoot Cd contents, improved the 

seedling growth attributes and the mineral nutrients exhibiting the ameliorating impact to Cd toxicity. Variable genotypic 

responses were observed for different seedling growth traits and the status of mineral nutrients. Under elevating Cd levels, 

Basmati-198 showed less Cd accumulation revealing reduced toxic effects of Cd on seedling growth traits and the mineral 

nutrients as compared to other rice genotypes. © 2014 Friends Science Publishers 
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Introduction 
 

The presence of Cd in the environment caused serious 

threats to plant life as well as to human health and animals 

(Nawarot et al., 2006). In nature, plants take Cd directly 

from the soil solution. Plants being the primary producers in 

the food chain accumulate Cd in the edible parts and thus 

serve as a source of cadmium intake for humans and 

animals (Lopez-Millan et al., 2009). Higher amounts of Cd 

cause several diseases and disorders in humans (Nishijo et 

al., 2006). 

The incorporation of the Cd in plants occurs via non-

specific pathways. Being a non-redox metal and toxic to 

plants, Cd stimulates the inhibition of growth leading to the 

death of the plant. High concentration of Cd also induces 

oxidative stress by producing free radicals that may damage 

the tissues of plants (Zhang et al., 2005; Shekhawat et al., 

2008). It causes reduction in photosynthesis, reduces the 

contents of chlorophyll and disturbs the plant water and 

nutrient uptake balance (Mobin and Khan, 2007; Razinger 

et al., 2008).The literature reports that inhibition of plant 

growth is due to the direct effect of Cd on the nucleus or 

interaction with hormones where as in the upper parts 

(aerial) of the plants it is due to photosynthesis inhibition 

(Laspina et al., 2005). Moreover, it causes chlorosis, 

plant growth inhibition, deficiency of nitrogen and 

phosphorus, condensed transport of manganese and 

accelerates plant senescence (Mishra et al., 2006). In 

plant tissues Cd also induces damaging effects on the 

micro-and macro-elements stability (Lopez-Millan et al., 

2009). 

Salicylic acid, a plant growth regulator and found in 

crystalline form, is naturally present in several plants 

(Raskin et al., 1990) and considered an endogenously 

produced growth regulator due to its phenolic nature. In 

plants it takes part in the regulation of several plant 

physiological processes like growth, development, 

production of heat and ethylene, nitrate metabolism, 

flowering and also responds to environmental stresses 

(Hayat et al., 2007). It plays an important role in the 

germination of seeds and fruit yield (Klessig and Malamy, 

1994), as well as anion uptake (Harper and Balke, 1981). 

SA also acts as a non-enzymatic antioxidant and as a 

growth promoter by regulating various physiological 
processes in plants like photosynthesis (Fariduddin et al., 

2003; Arfan et al., 2007; Murtaza and Rehana, 2013). 

Moreover, SA being a water soluble antioxidative 

compound plays a role in abiotic stress tolerance for 

example under drought stress in wheat (Sakhabutdinova et 

al., 2003). Recently it has been observed that external 

application of SA can raise plant’s tolerance to abiotic 

stresses such as salinity (Gunes et al., 2007), drought 

(Azooz and Youssef, 2010), osmotic (Al-Hakimi, 2006) and 

heavy metal stress (Moussa and El-Gamel, 2010). 

Pretreatment of seeds with SA reduces the toxicity of Cd in 

rice (Guo et al., 2009), maize (Krantev et al., 2008), 

soybean (Drazic and Mihailovic, 2005) and barley 

(Metwally et al., 2003). 
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Rice (Oryza sativa L.) is one of the staple food crops 

and the diet of more than one third of the population 

throughout the world (Konwar and Jha, 2010). Among 

several factors affecting the rice yield and growthare the 

heavy metal contaminated soils. The heavy metals 

accumulate in agricultural lands due to the application of 

fertilizers, different types of manures and sludge 

(McLaughlin et al., 1999). All heavy metals are toxic to 

higher plants disturbing enzymes and other metabolic 

processes leading to reduced growth and yield (Wang et al., 

2003). A wide range of genotypes in their ability to 

accumulate Cd exists in rice (Liu et al., 2003) and several 

researchers had reported the genotypic differences in 

response to seedling growth and Cd toxicity/stress (Shao et 

al., 2004; Wu et al., 2006; Cheng et al., 2008; Du et al., 

2009). Keeping in view the toxic effects of Cd on rice, the 

present study was designed with the objectives to assess the 

role of SA in the alleviation of toxic effects of Cd in relation 

to Cd accumulation, seedling growth parameters and the 

contents of mineral nutrients and the genotypic responses to 

Cd toxicity.  
 

Materials and Methods 
 

Experimental Details 
 

The experiment was conducted in the growth chamber under 

controlled conditions of light and temperature (28±2ºC) in 

the Dept. of Botany, University of Agriculture, Faisalabad. 

Seeds of basmati rice genotypes (Basmati-370, Basmati-198, 

Basmati-2000 and Kashmir Basmati) were obtained from 

Nuclear Institute of Agriculture and Biology (NIAB). 

Cd regimes were prepared in the form of Cadmium 

chloride (CdCl2). Ten grains of each genotype were sown in 

small plastic pots containing river sand under five Cd 

treatments (control, 100, 500, 1000 and 1500 µM) and two 

SA levels (control and 0.1 mM). Different treatment 

combinations (0 µM Cd + 0.0 mM SA), (100 µM Cd + 0.0 

mM SA), (500 µM Cd + 0.0 mM SA), (1000 µM Cd + 0.0 

mM SA), (1500 µM Cd + 0.0 mM SA), (0 µM Cd + 0.1 mM 

SA), (100 µM Cd + 0.1 mM SA), (500 µM Cd + 0.1 mM 

SA), (1000 µM Cd + 0.1 mM SA) and (1500 µM Cd + 0.1 

mM SA) were maintained throughout the experiment. After 

germination, the seedlings were irrigated at an alternate day 

interval with half strength of Hoagland’s solution (Hoagland 

and Arnon, 1950) along with the corresponding Cd treatment 

combination for 15 days. After harvesting the experiment, 

different seedling growth parameters and contents of mineral 

nutrients were measured. 
 

Growth Determination 
 

Shoot and root lengths, shoot and root fresh weights, and 

their dry weights were recorded. The root stress tolerance 

index (STI) was calculated as follows: 
 

STI = Average length of root (treated) x 100 

Average length of root (control) 

Determination of Mineral Nutrients 
 

The dried ground material (0.5 g) of shoots, and roots were 

digested in concentrated HNO3 (5 mL) at 100
ο
C temperature 

and then raised the temperature at150
ο
C in digestion tubes 

and then made volume of the extracted up to 50 mL in the 

volumetric flask. Filtered the extract and used it for the 

determination of mineral nutrients concentrations. The 

dissolved amount of sodium (Na), potassium (K) and 

calcium (Ca) were determined by using flame photometer 

(Model: PFPI-7, Jenway, UK) and magnesium (Mg), 

manganese (Mn), iron (Fe) and cadmium (Cd) were 

determined with atomic absorption spectrometer (Model: 

Analyst-3100 Perklin Elmer, USA).  
 

Determination of Phosphorus (P) 
 

Br-reagent was prepared by dissolving 25 g of ammonium 

molybdate in 400 mL of distilled water. 1.25 g of 

ammonium metavenadate was dissolved in 300 mL of 

distilled water, then 250 mL HNO3 and cooled down. Mixed 

both solutions and maintained volume up to 1000 mL. Took 

2 mL of solution obtained by digesting plant material in 

concentrated HNO3 (as described above) and mixed with 2 

mL of Br-reagent. Kept for half an h and then took optical 

density (O.D.) at 460 nm (Hitachi-U 2001).  
 

Statistical analysis 
 

A three-way analysis of variance of data for all parameters 

was computed by using a computer software COSTAT 

(Cohort software Berkeley, California). The least significant 

differences between means were calculated using Duncan’s 

New Multiple Range test (P ≤ 0.05). 
 

Results 
 

Shoot and Root Lengths 
 

Shoot and root lengths significantly reduced with the 

increase in Cd concentration in the growth medium as 

compared to control (Fig. 1).The extent of reduction was 

observed more in root length as compared to shoot length. 

Among the genotypes, Basmati-198 attained the maximum 

shoot and root lengths in the control as well as under Cd 

stress. The application of SA improved the shoot as well as 

root lengths at all Cd concentrations. Among the genotypes, 

more reduction in shoot and root lengths was noted in 

Kashmir Basmati followed by Basmati-370, Basmati-2000 

and Basmati-198. 
 

Shoot and Root Fresh Weight 
 

Shoot and root fresh weights decreased as Cd concentration 

increased as compared to control (Fig. 2). More reduction in 

root fresh weight was observed than shoot fresh weight. 

Kashmir Basmati had the least shoot and root fresh weights 

among the genotypes in control and under Cd stress. Shoot 
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and root fresh weights decreased more in Kashmir Basmati 

than other genotypes. Less reduction was observed in shoot 

and root fresh weight of Basmati-198 followed by Basmati-

2000 and Basmati-370 under Cd stress. SA reduced Cd 

toxicity at all levels of Cd treatments and the improvements 

were observed in shoot and root fresh weights. 

 

Shoot and Root Dry Weight 
 

Shoot and root dry weights showed declines with the 

increments in the concentration of Cd in the growth medium 

as compared to control (Fig. 3). Root dry weight declined 

more than shoot dry weight. More reductions in shoot and 

root dry weights were observed in Kashmir Basmati 

followed by Basmati-370 and Basmati-2000 whereas the 

least reduction was noted inBasmati-198. The addition of SA 

in the Cd-containing medium improved the shoot and root 

dry weights in all genotypes than with the Cd treatments. 
 

Root Stress Tolerance Index (STI) 
 

All the genotypes showed reductions in stress tolerance 

index (STI) of root length at all the Cd treatments as well as 

at the treatments of combined SA and Cdas compared to 

control (Fig. 4). With the increments in Cd, the root STI 

reduced but differential genotypic improvements were 

observed when SA was applied with different Cd 

treatments. The highest STI was observed in genotype 

Basmati-198 (84.0) followed by Basmati-2000 (76.8) and 

Basmati-370 (67.8) whereas the lowest STI (55.4) was 

observed in Kashmir Basmati. 
 

 

 
 

Fig. 1: Interactive effects of SA and Cd on shoot and root 

lengths of four basmati rice genotypes. Error bars are shown 
 

 

 
 

Fig. 2: Interactive effects of SA and Cd on shoot and root fresh 

weights of four basmati rice genotypes. Error errors are shown 
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Fig. 3: Interactive effects of SA and Cd on shoot and root dry 

weights of four basmati rice genotypes. Error bars are shown 

 

 
 
Fig. 4: Interactive effects of SA and Cd on root stress 

tolerance index (STI) of four basmati rice genotypes 
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Mineral Nutrients 
 

The mineral nutrients (Na, K, Ca, Mg, and P) in all 

genotypes gradually decreased both in shoot and root with 

the increase in Cd concentrations in the growth medium as 

compared to control (Fig. 5-7). Basmati-198 showed lesser 

reduction in the contents of these nutrients than in other 

genotypes. The extent of reduction was more in shoots than 

in roots. The application of SA in combination with the 

elevating Cd improved the contents of nutrients both in 

 

 

 

 
 

Fig. 5: Interactive effects of SA and Cd on Na and K contents 

in both shoot and root of four basmati rice genotypes. Error 

bars are shown 
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Fig. 6: Interactive effects of SA and Cd on Ca and Mg 

contents in both shoot and root of four basmati rice 

genotypes. Standard errors are shown 
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shoot and root. Likewise, Mn and Fe contents decreased in 

the Cd-containing growth medium as compared to control 

(Fig. 8) whereas improvements were observed in these 

nutrients in both shoot and root of all the genotypes when 

SA was applied in combination with Cd.  

 

Cd Contents  
 

Cd contents significantly increased both in shoot and root as 

the Cd concentration increased in the medium as compared 

to control in all genotypes (Fig. 7). Comparatively, higher 

Cd contents were observed in roots than in shoots. The roots 

of Kashmir Basmati accumulated higher Cd contents than in 

 

 

 

 
 

Fig. 7: Interactive effects of SA and Cd on P and Cd contents 

in both shoot and root of four basmati rice genotypes. Error 

bars are shown 
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Fig. 8: Interactive effects of SA and Cd on Mn and Fe 

contents in both shoot and root of four basmati rice 

genotypes. Error bars are shown 
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other genotypes. When SA added alone in the medium, no 

change in mean Cd contents of roots or slight reduction in 

shoots was observed. The Cd contents in shoot and root of 

all genotypes decreased when SA was applied in 

combination with the elevating Cd treatments as compared 

to Cd-stressed conditions without SA. 
 

Correlations among Different Seedling Growth 

Parameters and Mineral Nutrients 
 

All possible combinations of the seedling growth 

parameters and the mineral nutrients within and among 

each other showed significantly positive associations 

whereas Cd contents in shoots as well as in roots showed 

significantly negative correlations with all the seedling 

growth parameters and the mineral nutrients (Table 1). 

The Cd contents in roots showed significantly positive 

correlation with the Cd contents in the shoots.  

 

Discussion 
 

After entering the plant system, Cd accumulated in the roots 

and caused disruptions in the status of mineral nutrients 

(Drazic et al., 2004; Singh and Brar, 2002) as a competition 

with other nutrients through the same carrier in the 

membrane (Welch et al., 1999). Reductions in growth due 

to Cd stress had been described directly relating to the 

inhibition in the length of apex and mitotic activity (Fusconi 

et al., 2006). SA had been recognized playing its role in the 

regulation of growth, development processes of plants and 

their responses to environmental stresses (Senaratana et 
al., 2000) inducing plants defense to most of the abiotic 

stresses including Cd toxicity (Pal et al., 2005). In the 

present studies, no effects of SA treatment alone on root Cd 

or slight reduction in shoot Cd as compared to control 

revealed that the protective effect of SA against subsequent 

Cd toxicity in roots or shoots was likely due to the 
inhibition of Cd uptake, thus occurring the possibility of 

formation of stable SA-Cd complexes, which might help in 

the reduction of Cd toxicity after SA application. Shoot and 

root lengths, shoot and root fresh weights, and their weights 

decreased with the increments in Cd concentration in the 

growth medium as that reported in Raphanus sativus (Raza 

and Shafiq, 2013), Oryza sativa (Choudhury and Panda, 

2004), mungbean (Wahid et al., 2007) and Zea mays 

(Perveen et al., 2011). More adverse effects of Cd toxicity 

were observed on roots than on shoots implying that roots 

rapidly absorbed heavy metal in different plant species (Cd) 

(Piotrowska et al., 2010; Bah et al., 2011). On the other 

hand, the addition of SA in Cd-containing growth medium 

enhanced the growth parameters (shoot and root lengths, 

shoot and root fresh, and their dry biomasses) similar to the 

results reported by Krantev et al. (2008) in maize (Zea 

mays). Our results may be integrated with the results that 

emphasized the enhancement of growth parameters with the 

application of SA under Cd-stressed conditions in Zea mays 

(Krantev et al. 2006). The positive associations within all 

the seedling growth parameters in this study revealed that 

increases in these traits might improve the biomass (roots 

and shoots) helpful in plant growth whereas Cd stress might 

hinder the growth (negative correlation of Cd with all traits). 

Drastic effects of Cdtoxicity had been reported on the 

concentration of mineral nutrients in different plant species 

(Goncalves et al., 2009) and Kim et al. (2002) described 

Table 1: Correlation coefficients among different growth parameters and mineral nutrients in basmati rice genotypes 
 

  Shoot 

Length 

Root 

Length 

Shoot 

Fresh 

Weight 

Root 

Fresh 

Weight 

Shoot 

Dry 

Weight 

Root 

Dry 

Weight 

Shoot 

K 

Root 

K 

Shoot 

Mg 

Root 

Mg 

Shoot 

Mn 

Root 

Mn 

Shoot 

Fe 

Root 

Fe 

Shoot 

P 

Root 

P 

Shoot 

Na 

Root 

Na 

Shoot 

Ca 

Root 

Ca 

Shoot 

Cd 

Root Length 0.776**                     

Shoot Fresh 

Weight 

0.791** 0.848**                    

Root Fresh 

Weight 

0.671** 0.770** 0.766**                   

Shoot Dry 

Weight 

0.743** 0.838** 0.869** 0.789**                  

Root Dry 

Weight 

0.647** 0.801** 0.734** 0.736** 0.767**                 

Shoot K 0.821** 0.892** 0.865** 0.773** 0.840** 0.786**                

Root K 0.729** 0.833** 0.878** 0.773** 0.845** 0.721** 0.884**               

Shoot Mg 0.769** 0.824** 0.785** 0.853** 0.829** 0.812** 0.822** 0.795**              

Root Mg 0.766** 0.864** 0.820** 0.860** 0.856** 0.837** 0.850** 0.815** 0.955**             

Shoot Mn 0.772** 0.882** 0.908** 0.872** 0.888** 0.800** 0.892** 0.891** 0.862** 0.896**            

Root Mn 0.750** 0.834** 0.857** 0.771** 0.813** 0.729** 0.857** 0.815** 0.808** 0.828** 0.888**           

Shoot Fe 0.724** 0.860** 0.888** 0.732** 0.819** 0.765** 0.874** 0.869** 0.767** 0.803** 0.882** 0.805**          

Root Fe 0.741** 0.861** 0.873** 0.759** 0.847** 0.729** 0.849** 0.868** 0.818** 0.849** 0.893** 0.836** 0.888**         

Shoot P 0.738** 0.833** 0.866** 0.845** 0.830** 0.762** 0.824** 0.820** 0.831** 0.846** 0.870** 0.787** 0.807** 0.826**        

Root P 0.761** 0.829** 0.860** 0.808** 0.823** 0.766** 0.836** 0.846** 0.828** 0.851** 0.866** 0.815** 0.845** 0.831** 0.860**       

Shoot Na 0.867** 0.778** 0.817** 0.664** 0.771** 0.658** 0.816** 0.788** 0.746** 0.776** 0.811** 0.783** 0.741** 0.781** 0.755** 0.758**      

Root Na 0.783** 0.836** 0.899** 0.846** 0.861** 0.761** 0.864** 0.842** 0.858** 0.879** 0.938** 0.856** 0.835** 0.860** 0.865** 0.853** 0.801**     

Shoot Ca 0.775** 0.784** 0.857** 0.680** 0.812** 0.686** 0.798** 0.791** 0.755** 0.789** 0.850** 0.825** 0.796** 0.823** 0.783** 0.793** 0.879** 0.847**    

Root Ca 0.767** 0.821** 0.884** 0.713** 0.853** 0.705** 0.812** 0.845** 0.772** 0.808** 0.867** 0.821** 0.846** 0.842** 0.811** 0.844** 0.863** 0.859** 0.930**   

Shoot Cd -

0.792** 

-

0.848** 

-

0.882** 

-

0.895** 

-

0.873** 

-

0.823** 

-

0.858** 

-

0.852** 

-

0.924** 

-

0.940** 

-

0.932** 

-

0.831** 

-

0.853** 

-

0.868** 

-

0.896** 

-

0.887** 

-

0.786** 

-

0.927** 

-

0.822** 

-

0.859** 

 

Root Cd -

0.717** 

-

0.811** 

-

0.823** 

-

0.872** 

-

0.845** 

-

0.819** 

-

0.808** 

-

0.814** 

-

0.899** 

-

0.929** 

-

0.893** 

-

0.773** 

-

0.829** 

-

0.831** 

-

0.846** 

-

0.846** 

-

0.708** 

-

0.861** 

-

0.746** 

-

0.793** 

0.949** 
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that Cd entered the root cells of rice through Mg and Ca 

transporters, and these transporters had the ability to inhibit 

the transport of Cd. The depressions in the concentration of 

Ca had been described in higher plants due to the 

occurrence of polyvalent Cd cations in the medium 

(Marschner, 2002). Potassium had been considered the 

essential ion to plant life in regulating cell osmotic balance 

during stress periods and in the activity of a number of 

enzymes (Epstein and Bloom, 2005; Taiz and Zeiger, 2010). 

Phosphorus had multifaceted roles in plant metabolism and 

development whereas its deficiency led to stunted growth 

and purple pigmentation of leaves (Epstein and Bloom, 

2005). In this study, the increasing Cd concentrations 

showed drastic effects on the contents of mineral nutrients 

(Na, K, Ca, Mg, P, Mn and Fe) in shoots as well as in roots 

like that in wheat (Shukla et al., 2003). More reductions in 

the concentration of shoot Mg and Fe cations under Cd 

stress observed in this study supported the view that reduced 

concentrations of Fe and Mg caused chlorosis because these 

elements had been the essential cofactors of polypeptide 

enzymes of photosystems (PS-I and PS-II), while the Mn 

cations had the competing ability with the Cd for uptake in 

plants. The beneficial effects of SA on seedling growth 

under Cd stress could be realized in the maintenance of 

optimal mineral nutrients (Taiz and Zeiger, 2010). 

In rice seedlings, the application of SA enhanced the 

concentration inducing transport of the cations (Ca, K, 

Fe, Mg, Mn, Na, P) from growth medium to the shoots and 

roots. This enhancement in the concentration of cations 

might be ascribed to the SA-induced H
+
-ATPase activity 

(Gordon et al., 2004) responsible to increase the absorption 

of these cations under Cd toxicity (Belkhadi et al., 2010). 

Enhanced concentrations of micro- and macro-nutrients by 

the addition of SA in the leaves and roots of Maize (Tuna et 

al., 2007) and increases in Na and K concentrations in 

wheat (Kaydan et al., 2007) had been reported. In literature, 

the SA ability to alleviate the Cd toxicity (Choudhury and 

Panda, 2004; Krantev et al., 2006), and synchronize the 

metabolic capacity and defense mechanisms in plants 

(Singh et al., 2010) had been described. Negative 

correlations of Cd with all the mineral nutrients under study 

suggested that Cd toxicity might hinder the translocation of 

these nutrients coinciding with the findings of Goncalves et 

al. (2009) in potato. The positive associations among the 

cations in the present studies indicated the possibility of 

alleviating Cd toxicity and the enhancements in the 

concentration of these cations might help in the 

improvement of the seedling growth and development. 

Based on root or shoot Cd contents, seedling growth 

parameters and STI values, and the status of mineral 

nutrients, differential genotypic responses were observed. 

Basmati-198 showed lesser root or shoot Cd contents, 

higher STI values, and lesser reductions in growth 

parameters and nutrient assimilations as compared to other 

genotypes under elevating Cd toxicity exhibiting tolerance 

whereas Kashmir Basmati was prone to Cd toxicity. 

In conclusion, Present studies revealed that Cd toxicity 

caused detrimental effects on basmati rice seedlings 

affecting the uptake and distribution pattern of certain 

mineral nutrients consequently responsible for the 

disturbances in status of mineral nutrients and the 

depressions in growth parameters. No effects of SA 

treatment alone on root Cd or slight reduction in shoot Cd as 

compared to control revealed the protective SA effects 

against subsequent Cd toxicity that might be ascribed to the 

inhibition of Cd uptake in roots or shoots. However, SA 

addition in the medium under elevating Cd stress improved 

these parameters revealing the ameliorative response of SA 

to Cd toxicity. Further studies are suggested to clarify the 

mechanisms involved in the detoxification of Cd in basmati 

rice that could further provide information for the selection 

of Cd-tolerant plants. 
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