INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19F-061/201x/00-0-000-000 DOI: 10.17957/IJAB/15.1144 http://www.fspublishers.org # SHARI IN SCIENCE SCIENCE ### Full Length Article # Effect of Elevated CO₂ Combined with Two Nitrogen Levels on Photosynthesis, Growth and Leaf Structure in CAM Orchid *Phalaenopsis* Shenping Xu^{1,2}, Xiuyun Yuan¹, Yan Zhang¹ and Qingsheng Ye^{2*} ¹Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China ²College of Life Sciences, South China Normal University, Guangzhou 510631, China *For correspondence: ye-lab@scnu.edu.cn #### **Abstract** In C₃ plants, elevated CO₂ will increase plant growth and physiological performance through its effect on photosynthesis, but nitrogen (N) usability is a key factor to limit the growth of plants and augment the response to the long-term elevated CO₂. To detect whether higher N availability holds back the photosynthetic down-regulation in CAM plant, the effects of photosynthetic physiology, leaf structure and growth of *Phalaenopsis* in the greenhouses under the combined conditions of two CO₂ concentrations (400 and 800 µmol·mol⁻¹) and two N levels (6 and 12 mmol·L⁻¹) was studied. The results showed that elevated CO2 increased net CO2 uptake rate of facilitated the accumulation of starch and soluble sugar in *Pholaenopsis* leaves, but no marked differences were discovered between two N levels. Meanwhile, long term elevated CO₂ reduced the contents of N and soluble proteins, but N application had beneficial effect on the contents of soluble proteins and N in Phalaenopsis leaves under high CO₂ concentration conditions. The elevated CO₂ combined with N levels markedly increased the activities of photosynthetic enzyme. And elevated CO₂ significantly improved the thickness of *Phalaenopsis* leaves, LE (low N level and elevated CO₂ concentration) and HE (high N level and elevated CO₂ concentration) increased by 6% and 8% compared with LA (low N level and atmospheric CO₂ concentration) and HA (high N level and atmospheric CO₂ concentration), respectively; the number of starch grains each chloroplast profile was augmented ~60% by elevated CO₂, so the chloroplast profile area was added by 19% in LE and 11% in HE, compared with LA and HA. The elevated CO2 significantly accelerated the biomass accumulation in *Phalaenopsis*, and the high N level further promoted this increase. Thus, increasing supply of N and CO₂ simultaneously was not very important in commercial production of CAM orchid *Phalaenopsis* during shortterm elevated CO₂ exposure, but it is still necessary to properly increase the supply of N during short-term elevated CO₂ exposure. © 2019 Friends Science Publishers Keywords: Elevated CO2; Net CO2 uptake rate; N level; Ultrastructure #### Introduction Elevated CO₂ will increase plant growth and physiological performance through its effect on photosynthesis, but the increases might differ greatly according to the pathway of carbon fixation and corresponding environmental conditions. In general, the biomass was augmented about 50% and 12% in C₃ and C₄ plants (Poorter and Navas, 2003; Prior et al., 2005), respectively, and 35% in CAM plants (Drennan and Nobel, 2000). Under long-term elevated CO2, the initial stimulation of net photosynthetic rate by elevated CO2 may be diminished in most C₃ plants, it is frequently as "down-regulation" or "photosynthetic acclimation" (Leakey et al., 2009; Aranjuelo et al., 2013). Most studies indicated that plants generally have decreased tissue concentration of N when growth under elevated CO₂ environments (Taub and Wang, 2008). Cotrufo et al. (1998) found that the dry mass concentration of N decreased by an average of 9% in roots and 14% in aboveground tissues, and recent literature surveys have consistently found that the dry mass N concentration of plant grown at CO2 elevated mean decreased by approximately 10-15% (Taub and Wang, 2008). The decreased tissue N concentrations of plants under elevated CO₂ conditions may be one of the reasons for photosynthetic acclimation. Although most studies have explained the account for this phenomenon, the definite mechanisms by which responsible for it are not certain, may be due to some dilution, the most often referred assumption and included biomass dilution and functional dilution (Gifford et al., 2000). Decreased nitrogen (N) uptake decreased transpiration (Del Pozo et al., 2007), less efficient of underground root architecture (Pritchard and Rogers, 2000), altered root uptake capacity and mycorrhizal status (Alberton et al., 2005). Decreased N demand, reflected in increasing the use efficiency of plant N (Stitt and Krapp, 1999) and photosynthetic acclimation (Urban et al., 2012). The elevated CO2-mediated N loss, influencing the plant loss N rate (Pang *et al.*, 2006) and individual drift in N concentration (Bernacchi *et al.*, 2007). Compared with C3 and C4 plants, less studies have been elaborated the influences to photosynthesis and growth by elevated CO₂ than CAM plants which employ both phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5bisphosphatecarboxylase / oxygenase (Rubisco) to uptake CO₂ over the day and night (Drennan and Nobel, 2000; Ceusters and Borland, 2011). Based on the limited literatures, most of the CAM species showed increased productivity under elevated CO₂ conditions (Ceusters and Borland, 2011), although the effect might differ greatly depending on the different CAM morphotypes (i.e., stem succulent, leaf succulent and epiphytes) and environmental factors (Zhu et al., 1999; Monteiro et al., 2009; Weiss et al., 2010). For most CAM species, elevated CO₂ enhanced the net CO₂ uptake rate with an average increase of 35-40% (Ceusters and Borland, 2011; Drennan and Nobel, 2000). However, beyond the average value, different conclusions exist among species, ranging over enhanced nocturnal CO2 uptake (Li et al., 2002), increased daytime CO₂ uptake (Ceusters *et al.*, 2008) and accelerated CO2 uptake both during day and night (Graham and Nobel, 1996; Zhu et al., 1999). Furthermore, like most C₃ species, some changes occur in the biochemistry, morphology and anatomy of CAM plants under elevated CO₂ conditions, which may be conducive to the higher net CO₂ uptake rate and the augmented biomass productivity with rising atmospheric CO₂ concentration (Drennan and Nobel, 2000; Ceusters and Borland, 2011) Rubisco is an important enzyme of photosynthesis, which accounts for 15% - 35% of total leaf N in C₃ plants (Makino and Osmond, 1991). Many C₃ species show decreases in Rubisco activities or content due to reduced leaf N contents in response to elevated CO₂, potentially resulting in the above-mentioned acclimatization to elevated CO₂ concentrations (Makino *et al.*, 2000; Urban *et al.*, 2012). Although studies have investigated the relation of Rubisco and N contents in leaf (Seneweera *et al.*, 2011), it is still unresolved about the specific physiological mechanism for the decrease of N and Rubisco content in leaves by CO₂ enrichment. However, it has still uncertain whether the CAM plants are potentially able to improve the growth to addition N during long-term exposure to higher CO₂ concentrations. In comparison to C₃ and C₄ species, the data describing the enzymes are limited in CAM plants (Drennan and Nobel, 2000), it would appear that the carboxylation activities for the enzymes PEPCase and Rubisco decrease in response to elevated CO₂ conditions in most CAM species (Nobel *et al.*, 1994; Graham and Nobel, 1996), but Li *et al.* (2002) observed a much lower activity of Rubisco during the daytime and much higher PEPCase activity during the dark period in *Mokara* Yellow grown under higher atmospheric CO₂ conditions. Thus, to excavate the underlying mechanism of responding mechanism to elevated CO₂ in CAM plants, it is necessary to have an integrated study of the effects on photosynthesis, growth, metabolite levels, morphology and anatomy by elevated CO₂ in CAM plants. The genus Phalaenopsis, a tropical epiphytic CAM orchid (Endo and Ikusima, 1989), is one of commercially important orchid as both cut flowers and pot plants around the world due to their long-lasting flowers and graceful appearance. The elevated CO₂ for *Phalaenopsis* has a good promotion effect on the growth and quality of *Phalaenopsis*, which are mainly manifested as enhanced photosynthetic capacity, accumulation of photosynthate, biomass increase (Li et al., 2007), increase of number of stems and flowers and prolonged vase life of cut flowers (Xu et al., 2015). In addition, the flower bud differentiation of *Phalaenopsis* will accelerate at 20°C under 700 µmol·mol·1 of CO₂ (Kataoka et al., 2004). Yoon et al. (2009) found that the chlorophyll content of cultured seedlings was increased by elevated CO₂ in Phalaenopsis, making Rubisco activity increased by 26.4%, leading to the formation of complete photosynthetic mechanism and eventually increasing the survival rate after seedling transplantation. These researches provide certain theoretical basis for actual application of elevated CO2 technology in Phalaenopsis production. However, on a long run, funder elevated CO2, Phalaenopsis production is seldom studied and the mechanism of elevated CO₂ and N interaction on photosynthesis and growth of Phalaenopsis remains unclear. This work investigates the influence of increasing N supplying level on photosynthesis and growth of Phalaenopsis under elevated CO2, in order to provide theoretical basis for enhancing the growth process and quality of *Phalaenopsis* in cultivation. #### **Materials and Methods** #### **Plant Materials and Experimental Design** This experimental material was *Phalaenopsis* 'Neyshan Guniang', a type of 4-leaf seedling with uniform growth, which was cultivated in white transparent plastic flowerpot (with diameter of 3.5 inch) with water moss as substrate, in South China Normal University. The studies were carried out in two glasshouses (6 m \times 4 m \times 3 m) with shading rate of 50%, relative humidity of 85% and temperature of 28/26°C (day/night). Peters Professional No.1 fertilizer (Scotts, USA) was diluted by 3000 times, and then applied by 200 mL per each strain, and 10 d as a course using NH₄NO₃. The control method of CO₂ concentration referred to the method by Xu et al. (2014). Elevated CO₂ was 800 μmol·mol⁻¹, which was conducted between 18:00 and 6:00 for every day. The CO₂ concentration for control greenhouse was set to 400 µmol·mol⁻¹. So, the treatments were separated as LA, Low N level (6 mM) + Atmospheric CO₂ concentration (400 \pm 30 μmol·mol⁻¹); HA, High N level (12 mM) + Atmospheric CO₂ concentration (400 \pm 30 μ mol·mol⁻¹); LE, Low N level (6 mM) + Elevated CO₂ (800 \pm 50 μ mol·mol⁻¹); HE, High N level (12 mM) + Elevated CO_2 (800 ± 50 μ mol·mol⁻¹). Each treatment had 150 plants. The intermediate part of the functional leaf was measured by gas exchange parameters at 30 and 120 d during the experiments. The leaves were collected at corresponding time, subjected to liquid N flash freezing, and then stored at -80°C for determination of physiological and biochemical indexes. #### **Gas Exchange Measurement** The leaves were measured at 22:00-24:00 on 30 and 120 d during the experimental periods. Five plants were measured the parameters of net CO_2 uptake rate and stomatal conductance (Gs) randomly by a portable infrared gas analyzer (Li-6800, Lincoln, USA) for each treatment. The CO_2 conditions were carried out in each corresponding treatment environments (400 or 800 μ mol·mol⁻¹). The measurements were started until the values of net CO_2 uptake rate were fluctuated less than 0.1 for stabilization. #### **Determination of Physiological and Biochemical Indexes** The activities of Rubisco and PEPcase were measured on the basis of the method proposed by Yoon et al (2009). The content of total soluble sugar was measured by anthranone colorimetry (Morris, 1948). Starch content was measured by the method proposed by Zapata *et al.* (2004). The soluble protein content in leaf was measured by referring to the method of Bradford (1976). The total N content in leaf of *Phalaenopsis* was measured by half trace kjeldahl method. The chlorophyll content was measured using 80% acetone (Harmut and Lichtenthaler, 1987). The titrableacid content was measured using indicator titration method (Lin and Hsu, 2004). At 6:00, the middle part of upper fully expanded functional leaf was collected, subjected to liquid N flash freezing, and then stored at -80 °C for determination of the titrableacid content. #### **Leaf Anatomical Structure** The microstructure of Phalaenopsis leaf was observed through traditional paraffin section method. At the morning after treatment for 120 d, the middle part of upper fully expanded functional leaf was collected, washed with distilled water and then 0.1 mol·L⁻¹ phosphoric acid buffer. By cutting along two sides of the middle main vein of leaf, a 1-2 mm square was obtained. After which, the square sample was fixed with 4% glutaraldehyde for 1 h using vacuum pump extraction, and rinsed with 0.1 M phosphate buffer 6 times (each lasting for 20 min). Subsequently, it was double fixed with 1% osmic acid and then rinsed with 0.1 mol·L-1 phosphate buffer 6 times (each lasting for 10 min). Then dehydration treatments were carried out using alcohol in gradient of 30%, 50%, 70%, 80%, 90% and 100% twice (each lasting for 15min). Next, the sample was successively subjected to epoxypropane (3:1) penetration for 1h, epoxypropane (1:1) penetration for 4h and epoxypropane (1:3) penetration for 1h, and then embedded with Epon-812 epoxy resin in an oven for polymerization. Finally, the sample was sliced using LKB-5 ultra-microtome, and observed with JEM-100cx transmission electron microscope. Each observation covered 20-30 views, and the average value of all observation values was selected as the final result. #### **Growth Parameters** The newly grown leaves were marked during the treatment period. Those expanding leaves randomly been chosen to measure the leaf area in each treatment by a leaf area meter (LI-3100 C; Li-Cor Inc., USA). To determine fresh weight, whole plants were reaped, washed up, and weighed. Then these plants were putted in 80°C oven for 72 h and the underground parts and aboveground were weighed respectively to calculate the ratio of root/shoot. Five repeated tests were conducted for each treatment. # **Statistical Analysis** The data analysis was executed according to two factor analyses of variances ANOVA (SPSS 20). In four treatments, CO_2 concentration was chosen as the first factor (400 μ mol·mol·l and 800 μ mol·mol·l) and N as the second factor (6 mM and 15 mM) and three experimental replicates per treatment. Significant differences were calculated at 5% and 1%. When difference among the treatments reached a significant level on the basis of the ANOVA analysis, least significant differences were calculated utilizing Lees Significant Difference (LSD) (P < 0.05). #### **Results** # Leaf Gas Exchange Net CO₂ uptake rate was increased markedly in *Phalaenopsis* leaves by CO₂ but not significantly influenced by N (Fig. 1A). Elevated CO₂ increased the net CO₂ uptake rate of *Phalaenopsis* under two N supplying levels by about 50% at the 30th day of experiment. On 120 d, the net CO₂ uptake rate under HE was higher than under HA by 46%, but lower than under LA by 39%. Elevated CO₂ significantly reduced the Gs in *Phalaenopsis* leaves during the whole experiment process (Fig. 1B). The Gs value under LE was lowered by 34% than under HA, while Gs value under HE was lowered by 28% than under HA. At the 120th day of experiment, the Gs in HE was larger than in LE by 21%. # **Enzyme Activity** Rubisco is a key enzyme for fixing CO₂ in C₃ plants, of which the activity is affected by multiple environmental factors. The activity of Rubisco was increased by elevated CO₂ (Fig. 2A). At the 30 d and 120 d of treatment, the Rubisco activity under LE was increased than under LA by 25% and 18%, respectively; however, activity under HE increased than under HA by 21% and 22%, respectively. Fig. 1: Effect of elevated CO₂ combined with nitrogen levels on net CO₂ uptake rate (A) and Gs (B) in CAM orchid *Phalaenopsis* 'Ney Shan Gu Niang'. Bars represent Mean \pm SD, n = 5 (with five plants per treatment). The different letters up the bars in represented the significantly different (P < 0.05) according to LSD test Fig. 2: Effects of elevated CO₂ combined with nitrogen levels on enzyme activities in leaves of *Phalaenopsis*' Ney Shan Gu Niang'. (A) Rubisco activity; (B) PEPcase activity. Bars represent mean \pm SD, n = 5 (with five plants per treatment). Bars with the same letter are not significantly different (P > 0.05) according to LSD test Rubsico activity nearly had no response to the N supplying level. The effect of elevated CO₂ and N interaction reached significant level at the 120 d of the treatment. PEPcase is a key enzyme to fix CO₂ for CAM plants. Elevated CO₂ significantly increased the PEPcase activity of *Phalaenopsis* leaves. The PEPcase activity under LE was increased than under LA by 10%, and the PEPcase activity under HE was increased under HA by 22%. N supplying level alone had no significant influence to PEPcase activity, only if it was combined applied with elevated CO₂. # Physiological and Biochemical Parameters levated CO₂ significantly enhanced both content of soluble sugar and starch in *Phalaenopsis* leaves under two N levels (Table 1). At 120 d, the total soluble sugar under LE was increased than under LA by 27%, the total soluble sugar under HE was increased than under HA by 34%. In both N levels, the starch content was increased by about 45%. Under elevated CO₂ condition, the soluble protein content showed a decreasing trend. At 30 d, the soluble protein content under LE and HE was lowered than under LA and HA by 6% and 11%, respectively. At 120 d, the soluble protein content under LE and HE was lowered than under LA and HA by 21% and 15%, respectively. Elevated CO₂ and N supplying level had a significant influence on titratable acid content (Table 1). The titratable acid content under LE was increased than under LA by 26%; the titratable acid content under HE was increased than under HA by 36%. Through measuring the N content in *Phalaenopsis* leaves, it was found that the elevated CO₂ increased the leaf N content by 8% at 30 d. At 120 d, the leaf N content under LE was decreased than under LA by 20%. #### **Leaf Microstructure** Through analyzing the microstructure of *Phalaenopsis* leaf, it was found that elevated CO₂ and N supplying level had no significant influence on the leaf microstructure (Fig. 3). This is probably due to no significant difference between spongy tissue and palisade tissue in CAM plants as compared with C₃ plants. Although elevated CO₂ significantly changed the photosynthetic characteristics of *Phalaenopsis*, microstructure in Phalaenopsis leaf remained unchanged. However, elevated CO₂ improved the thickness of Phalaenopsis leaf (Fig. 3 and 4). The leaf thickness under LE and HE was increased than under LA and HA by 6% and 8%, respectively. The increase of leaf thickness may be one of main reasons accounting for the increase of net CO₂ uptake rate. On one hand, elevated CO₂ enhanced the net CO₂ uptake rate and growth rate of *Phalaenopsis* and increased the leaf thickness. On the other hand, the increase of leaf thickness increased the storage capacity of vacuoles, thus promoting the accumulation of titrable acid and enhancing the net CO₂ uptake rate at night. Table 1: Effects of elevated CO₂ combined with two nitrogen levels on physiological and biochemical indices in leaves of *Phalaenopsis* 'Neyshan Guniang' | Time | Treatments | total soluble sugars (g·m ⁻²) | Starch (g·m ⁻²) | total soluble protein (g·m ⁻²) | titratable acids (μmol·g ⁻¹) | Nitrogen (%) | |------|------------|-------------------------------------------|-----------------------------|--------------------------------------------|------------------------------------------|--------------| | 30 | LA | 14.07±1.35 a | 4.63±0.70 a | 7.52±0.50 b | 103.33±2.89 a | 2.58±0.10 ac | | | HA | 14.89±0.71 ab | 5.05±0.44 ab | 7.86±0.41 b | 104.33±6.03 a | 2.57±0.07 ac | | | LE | 16.76±0.64 cd | 6.39±0.45 b | 7.07±0.36cb | 127.67±2.52 b | 2.80±0.19 c | | | HE | 16.33±1.37bc | 6.26±0.97 b | 7.02±0.33 c | 138.33±2.89 c | 2.80±0.19 c | | 120 | LA | 13.82±0.29 a | 5.51±0.92 ab | 8.29±0.44 a | 122.33±2.52 b | 2.45±0.10 a | | | HA | 13.79±1.16 a | 5.78±0.78 ab | 8.46±0.58 a | 123.00±2.65 b | 2.60±0.20 ac | | | LE | 17.58±0.60 cd | 8.00±0.95 c | 6.55±0.25 cd | 157.67±2.52 d | 1.96±0.06 b | | | HE | 18.45±0.93 d | 8.44±0.85 c | 7.20±0.57 b | 171.67±2.89 e | 2.55±0.12 ac | | 30 | CO_2 | * | ** | * | ** | * | | | N | n.s. | n.s. | n.s. | * | n.s. | | | CO_2*N | n.s. | n.s. | n.s. | n.s. | n.s. | | 120 | CO_2 | ** | ** | ** | ** | ** | | | N | n.s. | n.s. | n.s. | ** | ** | | | CO_2*N | n.s. | n.s. | n.s. | ** | * | The meaning of symbols used in ANOVA were: * Significant difference at 5%, ** Significant difference at 1%, the same below **Fig. 3:** Effects of elevated CO₂ combined with nitrogen levels on microstructure in leaves of *Phalaenopsis* 'Ney Shan Gu Niang' on 120 days. (A) LA;(B) HA; (C) LE; (D) HE. #### Leaf Ultrastructure Under elevated CO₂ and N supplying level did not affect the membrane structure of chloroplast (Fig. 5). However, the number of starch grains in chloroplast was significantly increased by elevated CO₂ under two N supplying levels by up to 60% (Table 2). In contrast, the area of starch grain at high N supplying level was increased than at low N supplying level by up to 64% for both CO₂ concentration conditions. In addition, elevated CO₂ significantly increased the number and area of chloroplast. The area of chloroplast under LE and HE was increased than under LA and HA by 19% and 11%, respectively, while the number of chloroplasts increased by 36% and 18%, respectively. The N supplying level had significant influence on the width and area of chloroplast. The area of chloroplast under HA and HE was increased than under LA and LE by 45% and 36%, respectively. **Fig. 4:** Effects of elevated CO₂ combined with nitrogen level on thickness in leaves of *Phalaenopsis* 'Ney Shan Gu Niang'. Bars represent mean \pm SD, n = 5 (with five plants per treatment). Bars with the same letter are not significantly different (P > 0.05) according to LSD test #### **Growth and Biomass** The root/shoot ratio was increased by elevated CO_2 , but elevated CO_2 and N supplying level had no significant influence on the biomass accumulation at 30 d (Table 3). At 120 d, the fresh and dry weights under HE were higher than under HA by 22% and 18%, respectively; while the fresh weight and dry weight under LE was higher than that under LA by 16% and 13%, respectively. The relative leaf area under LE and HE was increased than that under LA and HA by 14% and 15%, respectively; the root/stem ratio increased by 28% and 12%, respectively; but N supplying level had not significant influence on relative leaf area. Table 2: Effects of elevated CO2 combined with nitrogen level on Chloroplast ultrastructure of Phalaenopsis 'Ney Shan Gu Niang' | Treatment | starch grain | | chloroplast | | | | | |--------------------|----------------|----------------|----------------|-------------|-------------|-----------------|--| | | Area | Numbers | Length | Width | Area | Numbers | | | LA | 0.21±0.03a | 3.25±0.96a | 7.30±1.92a | 2.76±0.38a | 12.64±1.27a | 1.80±0.51a | | | HA | $0.34\pm0.04b$ | $3.50\pm0.58a$ | 8.08±0.51a | 3.24±0.10bc | 18.36±1.17b | 2.18±0.62ab | | | LE | 0.22±0.06a | 5.25±0.96b | $7.65\pm0.88a$ | 2.79±0.34ab | 14.98±0.56c | $2.45\pm0.17ab$ | | | HE | 0.37±0.06b | 5.75±1.50b | 7.90±0.27a | 3.42±0.27c | 20.45±0.41d | 2.57±0.26b | | | CO_2 | n.s. | ** | n.s. | n.s. | ** | * | | | N | ** | n.s. | n.s. | ** | ** | n.s. | | | CO ₂ *N | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | | Table 3: The statistics on part growth indicators of Phalaenopsis 'Ney Shan Gu Niang' | Time (d) | Treatment | Fresh weight (g) | Dry weight (g) | Root-shoot ratio | Leaf area (cm ²) | |----------|--------------------|------------------|----------------|------------------|------------------------------| | 30 | LA | 87.47±3.04a | 5.67±0.11a | 1.09±0.07bcd | 75.63±1.56a | | | HA | 87.19±2.90a | 5.61±0.07a | 1.04±0.04abc | 75.49±6.32a | | | LE | 90.62±3.48a | $5.58\pm0.32a$ | 1.13±0.05cde | 76.54±4.16a | | | HE | 91.00±3.60a | $5.79\pm0.14a$ | 1.17±0.04de | 76.09±4.28a | | 120 | LA | 121.69±2.20b | 7.52±0.16b | 0.96±0.13a | 259.92±4.26b | | | HA | 122.64±2.41b | 7.65±0.05b | 0.97±0.06ab | 265.17±5.10b | | | LE | 141.04±1.83c | $8.49\pm0.28c$ | 1.23±0.06de | 295,50±6.50c | | | HE | 149.01±1.64d | 9.06±0.16d | 1.09±0.03e | 304.29±9.81c | | 30 | CO_2 | n.s. | n.s. | * | n.s. | | | N | n.s. | n.s. | n.s. | n.s. | | | CO ₂ *N | n.s. | n.s. | n.s. | n.s. | | 120 | CO_2 | ** | ** | ** | ** | | | N | ** | * | n.s. | n.s. | | | CO ₂ *N | * | n.s. | n.s. | n.s. | Remark: Leaf area was the total area of leaves newly emerged during treatment **Fig. 5:** Effects of elevated CO₂ combined with nitrogen levels on chloroplast ultrastructure in leaves of *Phalaenopsis* 'Ney Shan Gu Niang' on 120 days. (A) LA; (B) HA; (C) LE; (D) HE. #### **Discussion** According to previous researches, it can be known that the promotion effect on net CO₂ uptake rate by elevated CO₂ in CAM plants varies from species to species. The increase of net CO₂ uptake rate can be divided into net CO₂ uptake rate increase at night (Li et al., 2002), daytime (Ceusters et al., 2008) and at both night and daytime (Zhu et al., 1999). This study only focuses on the elevated CO2 to Phalaenopsis at night. In the whole experiment, the net CO₂ uptake rate was significantly increased by elevated CO2 at night. Drennan and Nobel (2002) believed that there are completely different between instant and long-term of plants in response to the CO₂ concentrations. This is mainly because that the positive impact of elevated CO₂ can reach the best results only when the physical or any morphological changes (the thickness of green tissue increases) occur. At the late period (120 d) of the experiment, the net CO₂ uptake rate under LE was lower than under HE, but the difference was not significant. This means that the promotion influence of elevated CO₂ on net CO₂ uptake rate in *Phalaenopsis* will be decreased in some degree under long-term elevated CO₂ condition. Increasing N supplying level can inhibit such decrease of promotion effect of elevated CO₂ to certain extent, but the inhibition effect is not such significant than for C₃ plants. For most of plants, long-term elevated CO₂ will lead to decrease of plant photosynthetic capacity. The reasons for such phenomenon can be mainly drawn from three aspects: (1) stomatal limitation, generally attributable to the lower stomatal conductance in leaves (Long *et al.*, 2004); (2) feedback inhibition, usually caused by the imbalance of sourcesink (Qian *et al.*, 2012); (3) metabolic limitation, often resulting from a reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) amount or carboxylation efficiency (Erice *et al.*, 2006). In this work, the decrease of net CO₂ uptake rate of Phalaenopsis was accompanied with Gs decrease, increase of carbohydrates and improvement of Rubisco activity. This indicates that the decrease of net CO₂ uptake rate may be jointly resulted by stomatal limitation and metabolic limitation. The Gs is a key indicator affecting the response to CO₂ in plants, most of C₃ plants have significantly decreased in Gs by elevated CO₂. This is mainly due to that high CO₂ concentration enhances plant photosynthesis, increases the concentration of photosynthetic products in protective cells, and improves the cell water potential. On this basis, guard cells absorb water and expand, making the stoma closed (Ainsworth and Rogers, 2007). In this study, the decrease of Gs in *Phalaenopsis* leaves was accompanied by the increase of the content of soluble sugar and starch, which indicates that the decrease of Gs might be caused by the accumulation of carbohydrates. The diurnal transformation and efficiency of carbohydrates have a critical role in classification stages of CAM plants and affect the CO₂ uptake at night (Borland and Taybi, 2004). Furthermore, due to the need of furnishing the PEP with a carbon skeleton, carbohydrates must be distributed to other organs to maintain the integrity of plant growth and photosynthesis. Thus, the mechanism of regulating these potential conflicts of interest for CAM plants remains unclear, but it is probably related to the synthesis, degradation and transport of carbohydrates (Häusler et al., 2000). Studies show that the contents of soluble sugar and starch increase in different degrees under high CO2 concentration (Vicente et al., 2017). In this study, elevated significantly enhanced the accumulation of carbohydrates. To account for why elevated CO2 leads to increase of carbohydrate content of CAM plants, one possible reason is that the storage capacity of vacuole was significantly enhanced, which can dilute the concentration of solute in cells due to enhanced photosynthesis (Wang and Nobel, 1996). The other reason may be that the decrease of glycosyltransferase activity in CAM plant cell at elevated CO₂ conditions led to the decrease of hexokinase activity (Drennan and Nobel, 2000). The tissue concentrations of N was decreased by elevated CO₂, and the decrease protein content in leaves could be resulted from the imbalance of source-sink due to the accumulation of carbohydrates, consequently caused to a feedback inhibition of Rubsico (Aranjuelo et al., 2009), or caused by the redistribution of N occurs with the leaf growth (Fangmeier et al., 2000). In this study, the decrease of soluble protein content was accompanied with the increase of carbohydrates. Therefore, it can be derived that the decrease of soluble protein content was probably caused by the redistribution of N. Under elevated CO₂ conditions, the most frequently mentioned hypothesis about the N content decrease is that caused by the dilution because of non-structural carbohydrates accumulation, which is typically explained as "Dilution Hypotheses" (Taub and Wang, 2008). Since the change of carbon-N metabolism led to an increase of the proportion of carbohydrates in biomass, the N-containing compound was diluted accordingly. Any structural change caused by elevated CO2 will affect the physiological property of plants. For all types of plants, the morphology and anatomy of photosynthetic tissues are important for light acquisition and gas exchange (Nobel et al., 1994). There are not in abundance researches on the impact of elevated CO2 in CAM plant leaf structure. According to most of these researches, elevated CO₂ increase the thickness of green tissues in CAM plants (Drennan and Nobel, 2000). For example, the cladode thickness of O. ficusindicawas increased by about 15% under doubled concentration of CO₂ (Nobel and Israel, 1994); the leaf thickness of Agave deserti and A. comosus was increased by about 11% (Graham and Nobel, 1996). In this study, elevated CO₂ had no marked influence on leaf microstructure in Phalaenopsis, but only increased its leaf thickness. Relevant researches show that under long-term elevated CO2 conditions, the thickness of green tissue will increase, which is beneficial to enhance the capacity of vacuoles to store organic acids and thus enhancing the net CO₂ uptake rate in CAM plants (Graham and Nobel, 1996). In recent years, studies about the effect on leaf microstructure by of elevated CO₂ are mainly focused on C₃ plants, but less on CAM plants. There is only one report on periphyte CAM orchid (Gouket et al., 1999). Through observing the microstructure of *Phalaenopsis* leaf, it can be known that elevated CO₂ remarkably increased the number and area of the chloroplasts in mesophyll cells, which is in accordance with the results of research on arabidopsis (Teng et al., 2006) and tobacco (Wang et al., 2004). Although many studies have shown that the number of chloroplasts is increased by elevated CO2, the regulating mechanism of chloroplast by applying elevated CO2 in mesophyll cells remains unclear. It is probably due to the fact that elevated CO₂ is beneficial for the formation of chloroplasts, thus leading to the increase of number of chloroplasts (Wang et al., 2004). The increase of chloroplast area of *Phalaenopsis* is probably due to the increase of starch content under elevated CO₂ condition. In this study, elevated CO₂ had no influence on the size of starch grain, but only increased the number of starch grains in chloroplast, which is in accordance with the results of biochemical measurement of starch content in *Phalaenopsis* leaves. Relevant studies showed that the accumulation of starch in chloroplast may represent a carbon storage mechanism, which is beneficial for enhancing the library capacity, and 75% of N in leaf participates in the synthesis of photosynthetic components in chloroplast (Li et al., 2013), therefore the increase of N will inevitably increase the number and area of chloroplast. In this study, the N supplying level significantly increased the width and area of chloroplast of Phalaenopsis leaf. The area of chloroplast under HA and HE was increased than under LA and HA by 45% and 36%, respectively. In addition, the N supplying also increased the area of starch grain. Although, the ultra-microstructure of *Phalaenopsis* leaf had significant change under single factor of elevated CO₂ or N supplying, the effect of combined application of elevated CO₂ and N supplying on leaf ultra-microstructure was not so significant. There have been no reports investigating the effect of combined application in elevated CO₂ and N supplying on leaf ultra-microstructure, and the response mechanism need to be further studied. Compare with C₃ and C₄ plants, relatively little studies have studied the impacts of elevated CO2 on growth characteristics in CAM plants. The influence of elevated CO₂ on CAM plants varies significantly upon plant types (i.e., stem succulents, leaf succulents and epiphytes) and environmental factors (Zhu et al., 1999; Weiss et al., 2010). Most researches show that elevated CO₂ can enhance the growth and improve the production of CAM plants (Drennan and Nobel, 2000; Ceusters and Borland, 2011). Some studies suggest that the increase of average plant biomass is highly consistent with the all-day net CO₂ uptake. For instance, the net CO₂ uptake rate of pineapple under doubled concentration of CO₂ is increased by 15% and the total biomass is increased by 23% (Zhu et al., 1999). Through measurement of relevant growth indexes in this study, it can be known that elevated CO₂ remarkably increased the leaf area and thus enhanced the total biomass of fresh and dry weights in Phalaenopsis. In addition, increasing supply of N is beneficial for improving the area and extension of plant leaf. increasing the photosynthetic area and thus increasing the total biomass of plant. #### Conclusion The results showed that the increasing supply of N and CO_2 simultaneously was not very important in commercial production of CAM orchid *Phalaenopsis* during short-term elevated CO_2 exposure, but it is still necessary to properly increase the supply of N during short-term elevated CO_2 exposure. # Acknowledgement This work was funded by Henan Province Key Research Project of Institution of Higher Education (18A210026) and Aid Program for Science and Technology Innovative Research Team of Zhengzhou Normal University. #### References - Ainsworth, E.A. and A. Rogers, 2007. The response of photosynthesis and stomatal conductance to rising CO₂: mechanisms and environmental interactions. *Plant Cell Environ.*, 30: 258–270 - Alberton, O., T.W. Kuyper and A. Gorissen, 2005. Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO₂. New Phytol., 167: 859–868 - Aranjuelo, I., J.J.E. Irigoyen and E.S.S. Nogu, 2009. Elevated CO_2 and water-availability effect on gas exchange and nodule development in N_2 -fixing alfalfa plants. *Environ. Exp. Bot.*, 65: 18–26 - Aranjuelo, I., P.M. Cabrerizo, C. Arrese-Igor and P.M. Aparicio-Tejo, 2013. Pea plant responsiveness under elevated CO₂ is conditioned by the N source (N₂ fixation *versus* NO₃- fertilization). *Environ. Exp. Bot.*, 95: 34–40 - Bernacchi, C.J., J.N. Thompson, J.S. Coleman and K.D. Mcconnaughay, 2007. Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO₂. *Plant Cell Environ.*, 30: 1216–1222 - Borland, A.M. and T. Taybi, 2004. Synchronization of metabolic processes in plants with Crassulacean acid metabolism. J. Plant Physiol., 400: 1255–1265 - Bradford, M.M., 1976. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of a protein-dye binding. *Anal. Biochem.*, 72: 248–254 - Ceusters, J., A.M. Borland and E. Londers, et al., 2008. Diel shifts in carboxylation pathway and metabolite dynamics in the CAM bromeliad Aechmea 'Maya' in response to elevated CO₂. Ann. Bot., 102: 389–397 - Ceusters, J. and A.M. Borland, 2011. Impacts of elevated CO₂ on the growth and physiology of plants with crassulacean acid metabolism. *In: Progress in Botany* 72, pp. 163–181. Springer, Berlin Heidelberg, Germany - Cotrufo, M.F., P. Ineson and A. Scott, 1998. Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Global Change Biol.*, 4: 43–54 - Del Pozo, A.P.E., P. Rez, E. Guti, D. Rrez, A. Alonso, R. Morcuende, I. Mart and R. Nez-Carrasco, 2007. Gas exchange acclimation to elevated CO₂ in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. *Environ. Exp. Bot.*, 59: 371–380 - Drennan, P.M. and P.S. Nobel, 2000. Responses of CAM species to increasing atmospheric CO₂ concentrations. *Plant Cell Environ.*, 23: 767–781 - Endo, M. and I. Ikusima, 1989. Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a *Phalaenopsis* plant. *Plant Cell Physiol.*, 30: 43–47 - Erice, G., J.J. Irigoyen, P. Pérez, R. Martínez-Carrasco and M. Sánchez-Díaz, 2006. Effect of elevated CO₂, temperature and drought on dry matter partitioning and photosynthesis before and after cutting of *Nodulated alfalfa*. *Plant Sci.*, 170: 1059–1067 - Fangmeier, A., B. Chrost and K. Krupinska, 2000. CO₂ enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity. *Environ. Exp. Bot.*, 44: 151–164 - Gifford, R.M., D.J. Barrett and J.L. Lutze, 2000. The effects of elevated CO₂ on the C: N and C: P mass ratios of plant tissues. *Plant Soil*, 224: 1–14 - Gouk, S.S., J. He and C.S. Hew, 1999. Changes in photosynthetic capability and carbohydrate production in an epiphytic CAM orchid plantlet exposed to super-elevated CO₂. Environ. Exp. Bot., 41: 219–230 - Graham, E.A. and P.S. Nobel, 1996. Long-term effects of a doubled atmospheric CO₂ concentration on the CAM species *Agave deserti. J. Exp. Bot.*, 47: 61–69 - Harmut, A. and K. Lichtenthaler, 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. *Method Enzymol.*, 148: 350–383 - Häusler, R.E., B. Baur, J. Scharte, T. Teichmann, M. Eicks, K.L. Fisher, U. Flugge and S. Schubert, 2000. Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant *Mesembryanthemum crystallinum*. *Plant J.*, 24: 285–296 - Kataoka, K., K. Sumitomo, T. Fudano and K. Kawase, 2004. Changes in sugar content of *Phalaenopsis* leaves before floral transition. *Sci. Hortic.*, 102: 121–132 - Leakey, A.D., E.A. Ainsworth, C.J. Bernacchi, A. Rogers, S.P. Long and D.R. Ort, 2009. Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot., 60: 2859–2876 - Li, C.R., L.J. Gan, K. Xia, X. Zhou and C.S. Hew, 2002. Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO₂ enrichment. *Plant Cell Environ.*, 25: 369–377 - Li, H.Y., J.P. Zhuang, S.Q. Huang and Q.S. Ye, 2007. Effects of elevated CO₂ concentration on growth and carbon fixation of *Phalaenopsis* 'Sogo Benz Sogo'. *Acta Hortic. Sin.*, 34: 705–710 (in Chinese) - Li, Y., B. Ren, L. Ding, Q. Shen, S. Peng and S. Guo, 2013. Does chloroplast size influence photosynthetic nitrogen use efficiency? *Plos One*, 8: e62036 - Lin, M. and B. Hsu, 2004. Photosynthetic plasticity of *Phalaenopsis* in response to different light environments. *J. Plant Physiol.*, 161: 1259– 1268 - Long, S.P., E.A. Ainsworth, A. Rogers and D.R. Ort, 2004. Rising atmospheric carbon dioxide: plants FACE the Future. Ann. Rev. Plant Biol., 55: 591–628 - Makino, A. and B. Osmond, 1991. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. *Plant Physiol.*, 96: 355–362 - Makino, A., H. Nakano, T. Mae, T. Shimada and N. Yamamoto, 2000. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO₂ enrichment. J. Exp. Bot., 51: 383– 389 - Monteiro, J., G. Zotz and C. Korner, 2009. Tropical epiphytes in a CO₂-rich atmosphere. Acta Oecol., 35: 60–68 - Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science, 107: 254–255 - Nobel, P.S., M. Cui and A.A. Israel, 1994. Light, chlorophyll, carboxylase activity and CO₂ fixation at various depths in the chlorenchyma of Opuntia ficus-indica (L.) Miller under current and elevated CO₂. New Phytol., 128: 315–322 - Nobel, P.S. and A.A. Israel, 1994. Cladode development, environmental responses of CO₂ uptake, and productivity for *Opuntiaficus-indica* under elevated CO₂. J. Exp. Bot., 45: 295–303 - Pang, J., J. Zhu, Z. Xie, G. Liu, Y. Zhang, G. Chen, Q. Zeng and L. Cheng, 2006. A new explanation of the N concentration decrease in tissues of rice (*Oryza sativa* L.) exposed to elevated atmospheric CO₂. *Environ*. *Exp. Bot.*, 57: 98–105 - Poorter, H. and M.L. Navas, 2003. Plant growth and competition at elevated CO₂: on winners, losers and functional groups. *New Phytol.*, 157: 175–198 - Prior, S.A., R.G. Brett, H.H. Rogers, H.A. Torbert and D.W. Reeves, 2005. Elevated atmospheric CO₂ effects on biomass production and soil carbon in conventional and conservation cropping systems. *Global Change Biol.*, 11: 657–665 - Pritchard, S.G. and H.H. Rogers, 2000. Spatial and temporal deployment of crop roots in CO₂-enriched environments. New Phytol., 147: 55 17 - Qian, T., J.A. Dieleman, A. Elings and L. Marcelis, 2012 Leaf photosynthetic and morphological responses to elevated CO₂ concentration and altered fruit number in the semi-closed greenhouse. Sci. Hortic., 145: 1–9 - Seneweera, S., A. Makino, N. Hirotsu, R. Norton and Y. Suzuki, 2011. New insight into photosynthetic acclimation to elevated CO₂: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves. *Environ. Exp. Bot.*, 71: 128–136 - Stitt, M. and A. Krapp, 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. *Plant Cell Environ.*, 22: 583–621 - Taub, D.R. and X. Wang, 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO₂? A critical examination of the hypotheses. J. Integr. Plant Biol., 50: 1365–1374 - Teng, N., J. Wang, T. Chen, X. Wu, Y. Wang and J. Lin, 2006. Elevated CO₂ induces physiological, biochemical and structural changes in leaves of *Arabidopsis thaliana*. New Phytol., 172: 92–103 - Urban, O., M. Hrstka., A.M. Zitov, V. Holi, K. Klem, C. Calfapietra, P. De Angelis and M.V. Marek, 2012. Effect of season, needle age and elevated CO₂ concentration on photosynthesis and Rubisco acclimation in *Picea abies. Plant Physiol. Biochem.*, 58: 135–141 - Vicente, R., R. Martínez-Carrasco, P. Pérez and R. Morcuende, 2017. New insights into the impacts of elevated CO₂, nitrogen, and temperature levels on the regulation of C and N metabolism in durum wheat using network analysis. *New Biotechnol.*, 40: 192–199 - Wang, N. and P.S. Nobel, 1996. Doubling the CO₂ concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for *Opuntiaficus-indica*. *Plant Physiol.*, 110: 893-902 - Wang, X., O.R. Anderson and K.L. Griffin, 2004. Chloroplast numbers, mitochondrion numbers and carbon assimilation physiology of *Nicotiana sylvestris* as affected by CO₂ concentration. *Environ. Exp.* Bot., 51, 21–31 - Weiss, I., Y. Mizrahi and E. Raveh, 2010. Effect of elevated CO₂ on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus. Sci. Hortic., 123: 531–536 - Xu, S.P., X.S. Zhu, C. Li and Q.S. Ye, 2014. Effects of CO₂ enrichment on photosynthesis and growth in *Gerbera jamesonii*. Sci. Hortic., 177: 77–84 - Xu, S.P., L.T. Zeng and Q.S. Ye, 2015. Effects of long-term elevated CO₂ on growth and flowering in *Phalaenopsis*. *Acta Hortic*. *Sin.*, 8: 1599–1605 (in Chinese) - Yoon, Y., M. Mobin, E. Hahn and K. Paek, 2009. Impact of in vitro CO₂ enrichment and sugar deprivation on acclimatory responses of *Phalaenopsis* plantlets to *ex vitro* conditions. *Environ. Exp. Bot.*, 65: 183–188 - Zapata, C., E. Deléens, S. Chaillou and E.C. Magn, 2004. Partitioning and mobilization of starch and N reserves in grapevine (Vitisvinifera L.). J. Plant Physiol., 141: 1031–1040 - Zhu, J., G. Goldstein and D.P. Bartholomew, 1999. Gas exchange and carbon Isotope composition of *Anonas comosus*in response to elevated CO₂ and temperature. *Plant Cell Environ.*, 22: 999–1008 (Received 18 April 2019; Accepted 27 May 2019